These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 32998953)
1. The heptameric structure of the flagellar regulatory protein FlrC is indispensable for ATPase activity and disassembled by cyclic-di-GMP. Chakraborty S; Biswas M; Dey S; Agarwal S; Chakrabortty T; Ghosh B; Dasgupta J J Biol Chem; 2020 Dec; 295(50):16960-16974. PubMed ID: 32998953 [TBL] [Abstract][Full Text] [Related]
2. Unique ATPase site architecture triggers cis-mediated synchronized ATP binding in heptameric AAA+-ATPase domain of flagellar regulatory protein FlrC. Dey S; Biswas M; Sen U; Dasgupta J J Biol Chem; 2015 Apr; 290(14):8734-47. PubMed ID: 25688103 [TBL] [Abstract][Full Text] [Related]
3. Crystal Structure of VpsR Revealed Novel Dimeric Architecture and c-di-GMP Binding Site: Mechanistic Implications in Oligomerization, ATPase Activity and DNA Binding. Chakrabortty T; Roy Chowdhury S; Ghosh B; Sen U J Mol Biol; 2022 Jan; 434(2):167354. PubMed ID: 34774564 [TBL] [Abstract][Full Text] [Related]
4. Mechanistic insights into c-di-GMP-dependent control of the biofilm regulator FleQ from Pseudomonas aeruginosa. Matsuyama BY; Krasteva PV; Baraquet C; Harwood CS; Sondermann H; Navarro MV Proc Natl Acad Sci U S A; 2016 Jan; 113(2):E209-18. PubMed ID: 26712005 [TBL] [Abstract][Full Text] [Related]
5. Cyclic diguanosine monophosphate represses bacterial flagella synthesis by interacting with the Walker A motif of the enhancer-binding protein FleQ. Baraquet C; Harwood CS Proc Natl Acad Sci U S A; 2013 Nov; 110(46):18478-83. PubMed ID: 24167275 [TBL] [Abstract][Full Text] [Related]
6. Phosphorylation of the flagellar regulatory protein FlrC is necessary for Vibrio cholerae motility and enhanced colonization. Correa NE; Lauriano CM; McGee R; Klose KE Mol Microbiol; 2000 Feb; 35(4):743-55. PubMed ID: 10692152 [TBL] [Abstract][Full Text] [Related]
7. Purification, crystallization and preliminary X-ray analysis of the AAA+ σ54 activator domain of FlrC from Vibrio cholerae. Dey S; Dasgupta J Acta Crystallogr Sect F Struct Biol Cryst Commun; 2013 Jul; 69(Pt 7):800-3. PubMed ID: 23832212 [TBL] [Abstract][Full Text] [Related]
8. Characterization of enhancer binding by the Vibrio cholerae flagellar regulatory protein FlrC. Correa NE; Klose KE J Bacteriol; 2005 May; 187(9):3158-70. PubMed ID: 15838043 [TBL] [Abstract][Full Text] [Related]
9. The N-terminal FleQ domain of the Vibrio cholerae flagellar master regulator FlrA plays pivotal structural roles in stabilizing its active state. Chakraborty S; Agarwal S; Bakshi A; Dey S; Biswas M; Ghosh B; Dasgupta J FEBS Lett; 2023 Sep; 597(17):2161-2177. PubMed ID: 37402215 [TBL] [Abstract][Full Text] [Related]
10. Cyclic di-GMP inhibits Vibrio cholerae motility by repressing induction of transcription and inducing extracellular polysaccharide production. Srivastava D; Hsieh ML; Khataokar A; Neiditch MB; Waters CM Mol Microbiol; 2013 Dec; 90(6):1262-76. PubMed ID: 24134710 [TBL] [Abstract][Full Text] [Related]
11. Systematic Identification of Cyclic-di-GMP Binding Proteins in Vibrio cholerae Reveals a Novel Class of Cyclic-di-GMP-Binding ATPases Associated with Type II Secretion Systems. Roelofs KG; Jones CJ; Helman SR; Shang X; Orr MW; Goodson JR; Galperin MY; Yildiz FH; Lee VT PLoS Pathog; 2015 Oct; 11(10):e1005232. PubMed ID: 26506097 [TBL] [Abstract][Full Text] [Related]
12. Distinct roles of an alternative sigma factor during both free-swimming and colonizing phases of the Vibrio cholerae pathogenic cycle. Klose KE; Mekalanos JJ Mol Microbiol; 1998 May; 28(3):501-20. PubMed ID: 9632254 [TBL] [Abstract][Full Text] [Related]
13. The novel sigma54- and sigma28-dependent flagellar gene transcription hierarchy of Vibrio cholerae. Prouty MG; Correa NE; Klose KE Mol Microbiol; 2001 Mar; 39(6):1595-609. PubMed ID: 11260476 [TBL] [Abstract][Full Text] [Related]
14. Nucleotide binding by the widespread high-affinity cyclic di-GMP receptor MshEN domain. Wang YC; Chin KH; Tu ZL; He J; Jones CJ; Sanchez DZ; Yildiz FH; Galperin MY; Chou SH Nat Commun; 2016 Aug; 7():12481. PubMed ID: 27578558 [TBL] [Abstract][Full Text] [Related]
15. Cyclic di-GMP Increases Catalase Production and Hydrogen Peroxide Tolerance in Fernandez NL; Waters CM Appl Environ Microbiol; 2019 Sep; 85(18):. PubMed ID: 31300398 [No Abstract] [Full Text] [Related]
16. Bacterial rotary export ATPases are allosterically regulated by the nucleotide second messenger cyclic-di-GMP. Trampari E; Stevenson CE; Little RH; Wilhelm T; Lawson DM; Malone JG J Biol Chem; 2015 Oct; 290(40):24470-83. PubMed ID: 26265469 [TBL] [Abstract][Full Text] [Related]
17. Partially Reciprocal Replacement of FlrA and FlrC in Regulation of Shewanella oneidensis Flagellar Biosynthesis. Gao T; Shi M; Gao H J Bacteriol; 2018 Apr; 200(7):. PubMed ID: 29358496 [TBL] [Abstract][Full Text] [Related]
18. Role of cyclic Di-GMP during el tor biotype Vibrio cholerae infection: characterization of the in vivo-induced cyclic Di-GMP phosphodiesterase CdpA. Tamayo R; Schild S; Pratt JT; Camilli A Infect Immun; 2008 Apr; 76(4):1617-27. PubMed ID: 18227161 [TBL] [Abstract][Full Text] [Related]
19. VpsR and cyclic di-GMP together drive transcription initiation to activate biofilm formation in Vibrio cholerae. Hsieh ML; Hinton DM; Waters CM Nucleic Acids Res; 2018 Sep; 46(17):8876-8887. PubMed ID: 30007313 [TBL] [Abstract][Full Text] [Related]
20. Cyclic Di-GMP Binding by an Assembly ATPase (PilB2) and Control of Type IV Pilin Polymerization in the Gram-Positive Pathogen Clostridium perfringens. Hendrick WA; Orr MW; Murray SR; Lee VT; Melville SB J Bacteriol; 2017 May; 199(10):. PubMed ID: 28242722 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]