These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Enhancing insect flight research with a lab-on-cables. Sane SP Sci Robot; 2020 Aug; 5(45):. PubMed ID: 33022634 [TBL] [Abstract][Full Text] [Related]
4. A simplified dynamic model for controlled insect hovering flight and control stability analysis. Yao J; Yeo KS Bioinspir Biomim; 2019 Jul; 14(5):056005. PubMed ID: 31239412 [TBL] [Abstract][Full Text] [Related]
5. Design and evaluation of a deformable wing configuration for economical hovering flight of an insect-like tailless flying robot. Phan HV; Park HC Bioinspir Biomim; 2018 Apr; 13(3):036009. PubMed ID: 29493535 [TBL] [Abstract][Full Text] [Related]
6. Analytical model for instantaneous lift and shape deformation of an insect-scale flapping wing in hover. Kang CK; Shyy W J R Soc Interface; 2014 Dec; 11(101):20140933. PubMed ID: 25297319 [TBL] [Abstract][Full Text] [Related]
7. A contralateral wing stabilizes a hovering hawkmoth under a lateral gust. Han JS; Han JH Sci Rep; 2019 Nov; 9(1):17397. PubMed ID: 31757991 [TBL] [Abstract][Full Text] [Related]
8. A chordwise offset of the wing-pitch axis enhances rotational aerodynamic forces on insect wings: a numerical study. van Veen WG; van Leeuwen JL; Muijres FT J R Soc Interface; 2019 Jun; 16(155):20190118. PubMed ID: 31213176 [TBL] [Abstract][Full Text] [Related]
9. Good vibrations for flapping-wing flyers. Karásek M Sci Robot; 2020 Sep; 5(46):. PubMed ID: 32999051 [TBL] [Abstract][Full Text] [Related]
10. Chordwise wing flexibility may passively stabilize hovering insects. Bluman JE; Sridhar MK; Kang CK J R Soc Interface; 2018 Oct; 15(147):. PubMed ID: 30305421 [TBL] [Abstract][Full Text] [Related]
11. Hovering and forward flight of the hawkmoth Manduca sexta: trim search and 6-DOF dynamic stability characterization. Kim JK; Han JS; Lee JS; Han JH Bioinspir Biomim; 2015 Sep; 10(5):056012. PubMed ID: 26414442 [TBL] [Abstract][Full Text] [Related]
12. Scaling law and enhancement of lift generation of an insect-size hovering flexible wing. Kang CK; Shyy W J R Soc Interface; 2013 Aug; 10(85):20130361. PubMed ID: 23760300 [TBL] [Abstract][Full Text] [Related]
13. A new twist on gyroscopic sensing: body rotations lead to torsion in flapping, flexing insect wings. Eberle AL; Dickerson BH; Reinhall PG; Daniel TL J R Soc Interface; 2015 Mar; 12(104):20141088. PubMed ID: 25631565 [TBL] [Abstract][Full Text] [Related]
14. Asymmetry costs: effects of wing damage on hovering flight performance in the hawkmoth Fernández MJ; Driver ME; Hedrick TL J Exp Biol; 2017 Oct; 220(Pt 20):3649-3656. PubMed ID: 28794226 [TBL] [Abstract][Full Text] [Related]
15. A multibody approach for 6-DOF flight dynamics and stability analysis of the hawkmoth Manduca sexta. Kim JK; Han JH Bioinspir Biomim; 2014 Mar; 9(1):016011. PubMed ID: 24451177 [TBL] [Abstract][Full Text] [Related]
16. The effects of wing inertial forces and mean stroke angle on the pitch dynamics of hovering insects. Tahmasian S; Kotulak-Smith BC Sci Rep; 2024 Feb; 14(1):2814. PubMed ID: 38307914 [TBL] [Abstract][Full Text] [Related]
17. Wing-wake interaction destabilizes hover equilibrium of a flapping insect-scale wing. Bluman J; Kang CK Bioinspir Biomim; 2017 Jun; 12(4):046004. PubMed ID: 28463224 [TBL] [Abstract][Full Text] [Related]
19. Origin and transformation of the in-flight wing-coupling structure in Psocodea (Insecta: Paraneoptera). Ogawa N; Yoshizawa K J Morphol; 2018 Apr; 279(4):517-530. PubMed ID: 29226378 [TBL] [Abstract][Full Text] [Related]
20. Power requirements for the hovering flight of insects with different sizes. Lyu YZ; Sun M J Insect Physiol; 2021 Oct; 134():104293. PubMed ID: 34389411 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]