BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 32999304)

  • 1. Rhizodegradation of PAHs differentially altered by C3 and C4 plants.
    Sivaram AK; Subashchandrabose SR; Logeshwaran P; Lockington R; Naidu R; Megharaj M
    Sci Rep; 2020 Sep; 10(1):16109. PubMed ID: 32999304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Guild Composition of Root-Associated Bacteria Changes with Increased Soil Contamination.
    Ely CS; Smets BF
    Microb Ecol; 2019 Aug; 78(2):416-427. PubMed ID: 30701285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of plants with C3 and C4 carbon fixation pathways for remediation of polycyclic aromatic hydrocarbon contaminated soils.
    Sivaram AK; Logeshwaran P; Subashchandrabose SR; Lockington R; Naidu R; Megharaj M
    Sci Rep; 2018 Feb; 8(1):2100. PubMed ID: 29391433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant-Bacterial Degradation of Polyaromatic Hydrocarbons in the Rhizosphere.
    Turkovskaya O; Muratova A
    Trends Biotechnol; 2019 Sep; 37(9):926-930. PubMed ID: 31130309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissipation of polycyclic aromatic hydrocarbons (PAHs) in the rhizosphere: synthesis through meta-analysis.
    Ma B; He Y; Chen HH; Xu JM; Rengel Z
    Environ Pollut; 2010 Mar; 158(3):855-61. PubMed ID: 19854547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of clay mineral, wood sawdust or root organic matter on the bacterial and fungal community structures in two aged PAH-contaminated soils.
    Cébron A; Beguiristain T; Bongoua-Devisme J; Denonfoux J; Faure P; Lorgeoux C; Ouvrard S; Parisot N; Peyret P; Leyval C
    Environ Sci Pollut Res Int; 2015 Sep; 22(18):13724-38. PubMed ID: 25616383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstructed metagenomes reveal changes of microbial functional profiling during PAHs degradation along a rice (Oryza sativa) rhizosphere gradient.
    Ma B; Lyu XF; Zha T; Gong J; He Y; Xu JM
    J Appl Microbiol; 2015 Apr; 118(4):890-900. PubMed ID: 25619404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of plant photosystems in the remediation of benzo[a]pyrene and pyrene spiked soils.
    Sivaram AK; Logeshwaran P; Lockington R; Naidu R; Megharaj M
    Chemosphere; 2018 Feb; 193():625-634. PubMed ID: 29175394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant--rhizosphere-microflora association during phytoremediation of PAH-contaminated soil.
    Muratova A; Hūbner T; Tischer S; Turkovskaya O; Möder M; Kuschk P
    Int J Phytoremediation; 2003; 5(2):137-51. PubMed ID: 12929496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soil bacterial diversity and functionality are driven by plant species for enhancing polycyclic aromatic hydrocarbons dissipation in soils.
    Wang X; Teng Y; Ren W; Han Y; Wang X; Li X
    Sci Total Environ; 2021 Nov; 797():149204. PubMed ID: 34346367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhizosphere effects of PAH-contaminated soil phytoremediation using a special plant named Fire Phoenix.
    Liu R; Xiao N; Wei S; Zhao L; An J
    Sci Total Environ; 2014 Mar; 473-474():350-8. PubMed ID: 24374595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacteria from wheat and cucurbit plant roots metabolize PAHs and aromatic root exudates: Implications for rhizodegradation.
    Ely CS; Smets BF
    Int J Phytoremediation; 2017 Oct; 19(10):877-883. PubMed ID: 28318300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response of soil bacterial communities to polycyclic aromatic hydrocarbons during the phyto-microbial remediation of a contaminated soil.
    Miao R; Guo M; Zhao X; Gong Z; Jia C; Li X; Zhuang J
    Chemosphere; 2020 Dec; 261():127779. PubMed ID: 32736249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of plant families in a greenhouse phytoremediation study on an aged polycyclic aromatic hydrocarbon-contaminated soil.
    Olson PE; Castro A; Joern M; DuTeau NM; Pilon-Smits EA; Reardon KF
    J Environ Qual; 2007; 36(5):1461-9. PubMed ID: 17766825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of PAH degradation potential of native species from a coking plant through identifying of the beneficial bacterial community within the rhizosphere soil.
    Song L; Niu X; Tian Y; Xiao Y
    Chemosphere; 2021 Feb; 264(Pt 2):128513. PubMed ID: 33059278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soil Characteristics Constrain the Response of Microbial Communities and Associated Hydrocarbon Degradation Genes during Phytoremediation.
    Correa-García S; Rheault K; Tremblay J; Séguin A; Yergeau E
    Appl Environ Microbiol; 2021 Jan; 87(2):. PubMed ID: 33097512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyrosequence analysis of bacterial communities in aerobic bioreactors treating polycyclic aromatic hydrocarbon-contaminated soil.
    Singleton DR; Richardson SD; Aitken MD
    Biodegradation; 2011 Nov; 22(6):1061-73. PubMed ID: 21369833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rhizosphere effect is stronger than PAH concentration on shaping spatial bacterial assemblages along centimetre-scale depth gradients.
    Bourceret A; Leyval C; Thomas F; Cébron A
    Can J Microbiol; 2017 Nov; 63(11):881-893. PubMed ID: 28841396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linking initial soil bacterial diversity and polycyclic aromatic hydrocarbons (PAHs) degradation potential.
    Crampon M; Bodilis J; Portet-Koltalo F
    J Hazard Mater; 2018 Oct; 359():500-509. PubMed ID: 30086520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Emergence of Different Functionally Equivalent PAH Degrading Microbial Communities from a Single Soil in Liquid PAH Enrichment Cultures and Soil Microcosms Receiving PAHs with and without Bioaugmentation.
    Piubeli FA; Dos Santos LG; Fernández EN; DA Silva FH; Durrant LR; Grossman MJ
    Pol J Microbiol; 2018; 67(3):365-375. PubMed ID: 30451454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.