These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 32999311)

  • 61. Aberration analysis of a projection-type CGH display with an expanded FOV based on the HOE screen.
    Su WC; Zhou SK; Matoba O; Nitta K; Lin BS; Lin WK
    Opt Express; 2022 Sep; 30(19):33792-33803. PubMed ID: 36242406
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Augmented reality near-eye display using Pancharatnam-Berry phase lenses.
    Moon S; Lee CK; Nam SW; Jang C; Lee GY; Seo W; Sung G; Lee HS; Lee B
    Sci Rep; 2019 Apr; 9(1):6616. PubMed ID: 31036828
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Design of an optical see-through light-field near-eye display using a discrete lenslet array.
    Yao C; Cheng D; Yang T; Wang Y
    Opt Express; 2018 Jul; 26(14):18292-18301. PubMed ID: 30114010
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Occlusion-capable optical-see-through near-eye display using a single digital micromirror device.
    Ju YG; Choi MH; Liu P; Hellman B; Lee TL; Takashima Y; Park JH
    Opt Lett; 2020 Jul; 45(13):3361-3364. PubMed ID: 32630845
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Matrix optics representation and imaging analysis of a light-field near-eye display.
    Yao C; Cheng D; Wang Y
    Opt Express; 2020 Dec; 28(26):39976-39997. PubMed ID: 33379535
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Liquid Crystal Spatial Light Modulators for Simulating Zonal Multifocal Lenses.
    Li Y; Bradley A; Xu R; Kollbaum PS
    Optom Vis Sci; 2017 Sep; 94(9):867-875. PubMed ID: 28816865
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Cascaded transflective liquid crystal planar lenses enable multi-plane augmented reality.
    Ye X; Fan F; Wen S
    Opt Lett; 2023 Nov; 48(22):5919-5922. PubMed ID: 37966752
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Towards a Switchable AR/VR Near-eye Display with Accommodation-Vergence and Eyeglass Prescription Support.
    Xia X; Guan Y; State A; Chakravarthula P; Rathinavel K; Cham TJ; Fuchs H
    IEEE Trans Vis Comput Graph; 2019 Nov; 25(11):3114-3124. PubMed ID: 31403422
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Design of retinal-projection-based near-eye display with contact lens.
    Wu Y; Chen CP; Mi L; Zhang W; Zhao J; Lu Y; Guo W; Yu B; Li Y; Maitlo N
    Opt Express; 2018 Apr; 26(9):11553-11567. PubMed ID: 29716074
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Foveated imaging for near-eye displays.
    Tan G; Lee YH; Zhan T; Yang J; Liu S; Zhao D; Wu ST
    Opt Express; 2018 Sep; 26(19):25076-25085. PubMed ID: 30469615
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Holographic near-eye display based on complex amplitude modulation with band-limited zone plates.
    Chen Y; Hua M; Zhang T; Zhou M; Wu J; Zou W
    Opt Express; 2021 Jul; 29(14):22749-22760. PubMed ID: 34266031
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Binocular holographic three-dimensional display using a single spatial light modulator and a grating.
    Su Y; Cai Z; Liu Q; Shi L; Zhou F; Wu J
    J Opt Soc Am A Opt Image Sci Vis; 2018 Aug; 35(8):1477-1486. PubMed ID: 30110285
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A full-color compact 3D see-through near-eye display system based on complex amplitude modulation.
    Zhang Z; Liu J; Gao Q; Duan X; Shi X
    Opt Express; 2019 Mar; 27(5):7023-7035. PubMed ID: 30876275
    [TBL] [Abstract][Full Text] [Related]  

  • 74. LensIet VR: Thin, Flat and Wide-FOV Virtual Reality Display Using Fresnel Lens and LensIet Array.
    Bang K; Jo Y; Chae M; Lee B
    IEEE Trans Vis Comput Graph; 2021 May; 27(5):2545-2554. PubMed ID: 33755568
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Multi-plane augmented reality display based on cholesteric liquid crystal reflective films.
    Chen Q; Peng Z; Li Y; Liu S; Zhou P; Gu J; Lu J; Yao L; Wang M; Su Y
    Opt Express; 2019 Apr; 27(9):12039-12047. PubMed ID: 31052749
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Design of foveated contact lens display for augmented reality.
    Chen J; Mi L; Chen CP; Liu H; Jiang J; Zhang W
    Opt Express; 2019 Dec; 27(26):38204-38219. PubMed ID: 31878591
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Holographic near-eye display system with large viewing area based on liquid crystal axicon.
    Zheng YW; Wang D; Li YL; Li NN; Wang QH
    Opt Express; 2022 Sep; 30(19):34106-34116. PubMed ID: 36242431
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Photoalignment of sub-micrometer periodic liquid crystal polarization grating by using the optical imprinting method.
    Fang Q; Lv Y; Yan Z; Sun X; Shen J; Liu M; Wang T; Chen J; Yin S
    Opt Express; 2023 Apr; 31(8):13428-13435. PubMed ID: 37157481
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Design of a dual focal-plane near-eye display using diffractive waveguides and multiple lenses.
    Shi X; Xue Z; Ma S; Wang B; Liu Y; Wang Y; Song W
    Appl Opt; 2022 Jul; 61(20):5844-5849. PubMed ID: 36255821
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Compact design for optical-see-through holographic displays employing holographic optical elements.
    Zhou P; Li Y; Liu S; Su Y
    Opt Express; 2018 Sep; 26(18):22866-22876. PubMed ID: 30184944
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.