These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Gene Expression Clustering and Selected Head and Neck Cancer Gene Signatures Highlight Risk Probability Differences in Oral Premalignant Lesions. Carenzo A; Serafini MS; Roca E; Paderno A; Mattavelli D; Romani C; Saintigny P; Koljenović S; Licitra L; De Cecco L; Bossi P Cells; 2020 Aug; 9(8):. PubMed ID: 32756466 [TBL] [Abstract][Full Text] [Related]
3. Short telomere lengths in peripheral blood leukocytes are associated with an increased risk of oral premalignant lesion and oral squamous cell carcinoma. Bau DT; Lippman SM; Xu E; Gong Y; Lee JJ; Wu X; Gu J Cancer; 2013 Dec; 119(24):4277-83. PubMed ID: 24105340 [TBL] [Abstract][Full Text] [Related]
4. Essentials of oral cancer. Rivera C Int J Clin Exp Pathol; 2015; 8(9):11884-94. PubMed ID: 26617944 [TBL] [Abstract][Full Text] [Related]
5. MicroRNAs as Important Players and Biomarkers in Oral Carcinogenesis. Min A; Zhu C; Peng S; Rajthala S; Costea DE; Sapkota D Biomed Res Int; 2015; 2015():186904. PubMed ID: 26504785 [TBL] [Abstract][Full Text] [Related]
6. Usefulness of salivary sialic acid as a tumor marker in tobacco chewers with oral cancer. Azeem MS; Yesupatham ST; Mohiyuddin SMA; Sumanth V; Ravishankar S J Cancer Res Ther; 2020; 16(3):605-611. PubMed ID: 32719275 [TBL] [Abstract][Full Text] [Related]
7. Integration of transcriptomics and metabolomics reveals a novel gene signature guided by FN1 associated with immune response in oral squamous cell carcinoma tumorigenesis. Peng Y; Yin D; Li X; Wang K; Li W; Huang Y; Liu X; Ren Z; Yang X; Zhang Z; Zhang S; Fan T J Cancer Res Clin Oncol; 2023 Aug; 149(9):6097-6113. PubMed ID: 36656379 [TBL] [Abstract][Full Text] [Related]
8. Functionally impactful TP53 mutations are associated with increased risk of extranodal extension in clinically advanced oral squamous cell carcinoma. Gleber-Netto FO; Neskey D; Costa AFM; Kataria P; Rao X; Wang J; Kowalski LP; Pickering CR; Dias-Neto E; Myers JN Cancer; 2020 Oct; 126(20):4498-4510. PubMed ID: 32797678 [TBL] [Abstract][Full Text] [Related]
9. NOTCH1 mutations as prognostic marker in oral squamous cell carcinoma. Wu-Chou YH; Hsieh CH; Liao CT; Lin YT; Fan WL; Yang CH Pathol Res Pract; 2021 Jul; 223():153474. PubMed ID: 33993060 [TBL] [Abstract][Full Text] [Related]
10. Myeloid-derived suppressor cells and plasmacytoid dendritic cells are associated with oncogenesis of oral squamous cell carcinoma. Kouketsu A; Haruka S; Kuroda K; Hitoshi M; Kensuke Y; Tsuyoshi S; Takahashi T; Hiroyuki K J Oral Pathol Med; 2023 Jan; 52(1):9-19. PubMed ID: 36380437 [TBL] [Abstract][Full Text] [Related]
11. Parathyroid hormone-related protein serves as a prognostic indicator in oral squamous cell carcinoma. Lv Z; Wu X; Cao W; Shen Z; Wang L; Xie F; Zhang J; Ji T; Yan M; Chen W J Exp Clin Cancer Res; 2014 Dec; 33(1):100. PubMed ID: 25539663 [TBL] [Abstract][Full Text] [Related]
12. Subcellular localization and expression of E-cadherin and SNAIL are relevant since early stages of oral carcinogenesis. Lopes NM; Xavier FCA; Ortiz RC; Amôr NG; Garlet GP; Lara VS; Batista AC; Costa NL; Rodini CO Pathol Res Pract; 2018 Aug; 214(8):1185-1191. PubMed ID: 29970306 [TBL] [Abstract][Full Text] [Related]
13. Application of metabolomics in oral squamous cell carcinoma. Luo G; Wang S; Lu W; Ju W; Li J; Tan X; Zhao H; Han W; Yang X Oral Dis; 2024 Sep; 30(6):3719-3731. PubMed ID: 38376209 [TBL] [Abstract][Full Text] [Related]
14. Immunohistochemistry of YAP and dNp63 and survival analysis of patients bearing precancerous lesion and oral squamous cell carcinoma. Ono S; Nakano K; Takabatake K; Kawai H; Nagatsuka H Int J Med Sci; 2019; 16(5):766-773. PubMed ID: 31217745 [No Abstract] [Full Text] [Related]
15. Assessment of multiple pathways involved in the inhibitory effect of HCG22 on oral squamous cell carcinoma progression. Wang M; Feng Z; Li X; Sun S; Lu L Mol Cell Biochem; 2021 Jun; 476(6):2561-2571. PubMed ID: 33649984 [TBL] [Abstract][Full Text] [Related]
16. Association of serum and salivary tumor necrosis factor-α with histological grading in oral cancer and its role in differentiating premalignant and malignant oral disease. Krishnan R; Thayalan DK; Padmanaban R; Ramadas R; Annasamy RK; Anandan N Asian Pac J Cancer Prev; 2014; 15(17):7141-8. PubMed ID: 25227804 [TBL] [Abstract][Full Text] [Related]
17. Pathobiological role of cleft palate transmembrane protein 1 family proteins in oral squamous cell carcinoma. Inoue K; Hatano K; Hanamatsu Y; Saigo C; Kito Y; Bunai K; Shibata T; Takeuchi T J Cancer Res Clin Oncol; 2019 Apr; 145(4):851-859. PubMed ID: 30635792 [TBL] [Abstract][Full Text] [Related]
18. New Insights for an Advanced Understanding of the Molecular Mechanisms in Oral Squamous Cell Carcinoma. Caruntu A; Yang SF; Acero J Int J Mol Sci; 2024 Jun; 25(13):. PubMed ID: 39000073 [TBL] [Abstract][Full Text] [Related]
19. DNA Methylome Distinguishes Head and Neck Cancer from Potentially Malignant Oral Lesions and Healthy Oral Mucosa. Milutin Gašperov N; Sabol I; Božinović K; Dediol E; Mravak-Stipetić M; Licastro D; Dal Monego S; Grce M Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32961999 [TBL] [Abstract][Full Text] [Related]
20. Monitoring carcinogenesis in a case of oral squamous cell carcinoma using a panel of new metabolic blood biomarkers as liquid biopsies. Grimm M; Hoefert S; Krimmel M; Biegner T; Feyen O; Teriete P; Reinert S Oral Maxillofac Surg; 2016 Sep; 20(3):295-302. PubMed ID: 26875085 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]