These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 33000507)

  • 1. Distinguishing among complex evolutionary models using unphased whole-genome data through random forest approximate Bayesian computation.
    Ghirotto S; Vizzari MT; Tassi F; Barbujani G; Benazzo A
    Mol Ecol Resour; 2021 Nov; 21(8):2614-2628. PubMed ID: 33000507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extending approximate Bayesian computation with supervised machine learning to infer demographic history from genetic polymorphisms using DIYABC Random Forest.
    Collin FD; Durif G; Raynal L; Lombaert E; Gautier M; Vitalis R; Marin JM; Estoup A
    Mol Ecol Resour; 2021 Nov; 21(8):2598-2613. PubMed ID: 33950563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring Approximate Bayesian Computation for inferring recent demographic history with genomic markers in nonmodel species.
    Elleouet JS; Aitken SN
    Mol Ecol Resour; 2018 May; 18(3):525-540. PubMed ID: 29356336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Revised Model of Anatomically Modern Human Expansions Out of Africa through a Machine Learning Approximate Bayesian Computation Approach.
    Vizzari MT; Benazzo A; Barbujani G; Ghirotto S
    Genes (Basel); 2020 Dec; 11(12):. PubMed ID: 33339234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating demographic parameters from large-scale population genomic data using Approximate Bayesian Computation.
    Li S; Jakobsson M
    BMC Genet; 2012 Mar; 13():22. PubMed ID: 22453034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complex genetic admixture histories reconstructed with Approximate Bayesian Computation.
    Fortes-Lima CA; Laurent R; Thouzeau V; Toupance B; Verdu P
    Mol Ecol Resour; 2021 May; 21(4):1098-1117. PubMed ID: 33452723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ABC inference of multi-population divergence with admixture from unphased population genomic data.
    Robinson JD; Bunnefeld L; Hearn J; Stone GN; Hickerson MJ
    Mol Ecol; 2014 Sep; 23(18):4458-71. PubMed ID: 25113024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An ABC Method for Whole-Genome Sequence Data: Inferring Paleolithic and Neolithic Human Expansions.
    Jay F; Boitard S; Austerlitz F
    Mol Biol Evol; 2019 Jul; 36(7):1565-1579. PubMed ID: 30785202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inferring Population Size History from Large Samples of Genome-Wide Molecular Data - An Approximate Bayesian Computation Approach.
    Boitard S; Rodríguez W; Jay F; Mona S; Austerlitz F
    PLoS Genet; 2016 Mar; 12(3):e1005877. PubMed ID: 26943927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AABC: approximate approximate Bayesian computation for inference in population-genetic models.
    Buzbas EO; Rosenberg NA
    Theor Popul Biol; 2015 Feb; 99():31-42. PubMed ID: 25261426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Demographic inferences using short-read genomic data in an approximate Bayesian computation framework: in silico evaluation of power, biases and proof of concept in Atlantic walrus.
    Shafer AB; Gattepaille LM; Stewart RE; Wolf JB
    Mol Ecol; 2015 Jan; 24(2):328-45. PubMed ID: 25482153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the use of kernel approximate Bayesian computation to infer population history.
    Nakagome S
    Genes Genet Syst; 2015; 90(3):153-62. PubMed ID: 26510570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning for population size history inference: Design, comparison and combination with approximate Bayesian computation.
    Sanchez T; Cury J; Charpiat G; Jay F
    Mol Ecol Resour; 2021 Nov; 21(8):2645-2660. PubMed ID: 32644216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can the site-frequency spectrum distinguish exponential population growth from multiple-merger coalescents?
    Eldon B; Birkner M; Blath J; Freund F
    Genetics; 2015 Mar; 199(3):841-56. PubMed ID: 25575536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reliable ABC model choice via random forests.
    Pudlo P; Marin JM; Estoup A; Cornuet JM; Gautier M; Robert CP
    Bioinformatics; 2016 Mar; 32(6):859-66. PubMed ID: 26589278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Demographic model selection using random forests and the site frequency spectrum.
    Smith ML; Ruffley M; Espíndola A; Tank DC; Sullivan J; Carstens BC
    Mol Ecol; 2017 Sep; 26(17):4562-4573. PubMed ID: 28665011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deciphering the Routes of invasion of Drosophila suzukii by Means of ABC Random Forest.
    Fraimout A; Debat V; Fellous S; Hufbauer RA; Foucaud J; Pudlo P; Marin JM; Price DK; Cattel J; Chen X; Deprá M; François Duyck P; Guedot C; Kenis M; Kimura MT; Loeb G; Loiseau A; Martinez-Sañudo I; Pascual M; Polihronakis Richmond M; Shearer P; Singh N; Tamura K; Xuéreb A; Zhang J; Estoup A
    Mol Biol Evol; 2017 Apr; 34(4):980-996. PubMed ID: 28122970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inferring the history of population size change from genome-wide SNP data.
    Theunert C; Tang K; Lachmann M; Hu S; Stoneking M
    Mol Biol Evol; 2012 Dec; 29(12):3653-67. PubMed ID: 22787284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Approximate bayesian computation without summary statistics: the case of admixture.
    Sousa VC; Fritz M; Beaumont MA; Chikhi L
    Genetics; 2009 Apr; 181(4):1507-19. PubMed ID: 19189952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inferring past demographic changes from contemporary genetic data: A simulation-based evaluation of the ABC methods implemented in diyabc.
    Cabrera AA; Palsbøll PJ
    Mol Ecol Resour; 2017 Nov; 17(6):e94-e110. PubMed ID: 28654208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.