These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 33000782)

  • 41. Turn-on fluorescence probing of amyloid fibrils by the proto-berberine alkaloids and the study of their interactions.
    Li L; Luo WC; Jiang M; Yu X; Xu L
    Int J Biol Macromol; 2023 Mar; 231():123319. PubMed ID: 36682666
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The binding of thioflavin-T to amyloid fibrils: localisation and implications.
    Krebs MR; Bromley EH; Donald AM
    J Struct Biol; 2005 Jan; 149(1):30-7. PubMed ID: 15629655
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Spectroscopic characterization of diverse amyloid fibrils in vitro by the fluorescent dye Nile red.
    Mishra R; Sjölander D; Hammarström P
    Mol Biosyst; 2011 Apr; 7(4):1232-40. PubMed ID: 21279219
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Novel fluorescent trimethine cyanine dye 7519 for amyloid fibril inhibition assay.
    Volkova KD; Kovalska VB; Inshin D; Slominskii YL; Tolmachev OI; Yarmoluk SM
    Biotech Histochem; 2011 Jun; 86(3):188-91. PubMed ID: 20210517
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evaluation of an Ultrafast Molecular Rotor, Auramine O, as a Fluorescent Amyloid Marker.
    Mudliar NH; Sadhu B; Pettiwala AM; Singh PK
    J Phys Chem B; 2016 Oct; 120(40):10496-10507. PubMed ID: 27640606
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Binding Modes of Thioflavin T on the Surface of Amyloid Fibrils Studied by NMR.
    Ivancic VA; Ekanayake O; Lazo ND
    Chemphyschem; 2016 Aug; 17(16):2461-4. PubMed ID: 27165642
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Rotor-Tuning Boron Dipyrromethenes for Dual-Functional Imaging of Aβ Oligomers and Viscosity.
    Wang Y; Yang J; Chen Q; Su J; Shi WJ; Zhang L; Xia C; Yan J
    ACS Appl Bio Mater; 2022 Jun; 5(6):3049-3056. PubMed ID: 35671477
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phasor-FLIM analysis of Thioflavin T self-quenching in Concanavalin amyloid fibrils.
    Sancataldo G; Anselmo S; Vetri V
    Microsc Res Tech; 2020 Jul; 83(7):811-816. PubMed ID: 32180304
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Combined thioflavin T-Congo red fluorescence assay for amyloid fibril detection.
    Girych M; Gorbenko G; Maliyov I; Trusova V; Mizuguchi C; Saito H; Kinnunen P
    Methods Appl Fluoresc; 2016 Sep; 4(3):034010. PubMed ID: 28355156
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Investigation of the Binding Profiles of AZD2184 and Thioflavin T with Amyloid-β(1-42) Fibril by Molecular Docking and Molecular Dynamics Methods.
    Kuang G; Murugan NA; Tu Y; Nordberg A; Ågren H
    J Phys Chem B; 2015 Sep; 119(35):11560-7. PubMed ID: 26266837
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Trimethine cyanine dyes as fluorescent probes for amyloid fibrils: The effect of N,N'-substituents.
    Kuperman MV; Chernii SV; Losytskyy MY; Kryvorotenko DV; Derevyanko NO; Slominskii YL; Kovalska VB; Yarmoluk SM
    Anal Biochem; 2015 Sep; 484():9-17. PubMed ID: 25963892
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Two-photon fluorescence and fluorescence imaging of two styryl heterocyclic dyes combined with DNA.
    Gao C; Liu SY; Zhang X; Liu YK; Qiao CD; Liu ZE
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Mar; 156():1-8. PubMed ID: 26629954
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A highly sensitive hemicyanine-based near-infrared fluorescence sensor for detecting toxic amyloid aggregates in human serum.
    Warerkar OD; Mudliar NH; Ahuja T; Shahane SD; Singh PK
    Int J Biol Macromol; 2023 Aug; 247():125621. PubMed ID: 37392920
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Towards ratiometric sensing of amyloid fibrils in vitro.
    Freire S; Rodríguez-Prieto F; Ríos Rodríguez MC; Penedo JC; Al-Soufi W; Novo M
    Chemistry; 2015 Feb; 21(8):3425-34. PubMed ID: 25572280
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In Vivo and In Vitro Monitoring of Amyloid Aggregation via BSA@FGQDs Multimodal Probe.
    Yousaf M; Ahmad M; Bhatti IA; Nasir A; Hasan M; Jian X; Kalantar-Zadeh K; Mahmood N
    ACS Sens; 2019 Jan; 4(1):200-210. PubMed ID: 30596230
    [TBL] [Abstract][Full Text] [Related]  

  • 56. On the binding of Thioflavin-T to HET-s amyloid fibrils assembled at pH 2.
    Sabaté R; Lascu I; Saupe SJ
    J Struct Biol; 2008 Jun; 162(3):387-96. PubMed ID: 18406172
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A spectroscopic study of 2-[4'-(dimethylamino)phenyl]-benzothiazole binding to insulin amyloid fibrils.
    Kitts CC; Vanden Bout DA
    J Fluoresc; 2010 Jul; 20(4):881-9. PubMed ID: 20204681
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evaluation of intracellular lipid droplets viscosity by a probe with high fluorescence quantum yield.
    Lin B; Li Z; Lin Y; Shu Y; Wang J
    Anal Chim Acta; 2023 Oct; 1279():341776. PubMed ID: 37827674
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A near-infrared fluorescent probe quinaldine red lights up the β-sheet structure of amyloid proteins in mouse brain.
    Wang H; Zhang J; Dou F; Chen Z
    Biosens Bioelectron; 2020 Apr; 153():112048. PubMed ID: 32056662
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Smart Near-Infrared Fluorescence Probe for Selective Detection of Tau Fibrils in Alzheimer's Disease.
    Seo Y; Park KS; Ha T; Kim MK; Hwang YJ; Lee J; Ryu H; Choo H; Chong Y
    ACS Chem Neurosci; 2016 Nov; 7(11):1474-1481. PubMed ID: 27576176
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.