BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 33000812)

  • 1. Carbon phosphide nanosheets and nanoribbons: insights on modulating their electronic properties by first principles calculations.
    Chen T; Li H; Zhu Y; Liu D; Zhou G; Xu L
    Phys Chem Chem Phys; 2020 Oct; 22(39):22520-22528. PubMed ID: 33000812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic Structure and I-V Characteristics of InSe Nanoribbons.
    Yao AL; Wang XF; Liu YS; Sun YN
    Nanoscale Res Lett; 2018 Apr; 13(1):107. PubMed ID: 29671093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable Electronic Properties of Lateral Monolayer Transition Metal Dichalcogenide Superlattice Nanoribbons.
    Wang J; Srivastava GP
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33669836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dimensional and hydrogenating effect on the electronic properties of ZnSe nanomaterials: a computational investigation.
    Lv X; Li F; Gong J; Chen Z
    Phys Chem Chem Phys; 2018 Oct; 20(37):24453-24464. PubMed ID: 30221293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of electronic and magnetic properties in InSe nanoribbons: edge effect.
    Wu M; Shi JJ; Zhang M; Ding YM; Wang H; Cen YL; Guo WH; Pan SH; Zhu YH
    Nanotechnology; 2018 May; 29(20):205708. PubMed ID: 29504514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic and transport properties and physical field coupling effects for net-Y nanoribbons.
    Hu JK; Zhang ZH; Fan ZQ; Zhou RL
    Nanotechnology; 2019 Nov; 30(48):485703. PubMed ID: 31426048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic structure of BSb defective monolayers and nanoribbons.
    Ersan F; Gökoğlu G; Aktürk E
    J Phys Condens Matter; 2014 Aug; 26(32):325303. PubMed ID: 25049113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic structures, transport properties, and optical absorption of bilayer blue phosphorene nanoribbons.
    Gong LJ; Shi HL; Yang J; Han QZ; Ren YH; He SY; Zhao YH; Jiang ZT
    Phys Chem Chem Phys; 2023 Aug; 25(33):22487-22496. PubMed ID: 37581353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorene nanoribbon as a promising candidate for thermoelectric applications.
    Zhang J; Liu HJ; Cheng L; Wei J; Liang JH; Fan DD; Shi J; Tang XF; Zhang QJ
    Sci Rep; 2014 Sep; 4():6452. PubMed ID: 25245326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A first-principles study on zigzag phosphorene nanoribbons passivated by iron-group atoms.
    Chen N; Wang Y; Mu Y; Fan Y; Li SD
    Phys Chem Chem Phys; 2017 Sep; 19(37):25441-25445. PubMed ID: 28900647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning electronic properties of boron phosphide nanoribbons by edge passivation and deformation.
    Dai X; Zhang L; Jiang Y; Li H
    Phys Chem Chem Phys; 2019 Jul; 21(28):15392-15399. PubMed ID: 31276127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DFT based investigations for the structural and electronic properties of coved zigzag BP nanoribbons.
    Nemu A; Jaiswal NK
    J Mol Graph Model; 2023 Jun; 121():108453. PubMed ID: 36940487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum confinement and edge effects on electronic properties of zigzag green phosphorene nanoribbons.
    Ma C; Ma T; Peng X
    J Phys Condens Matter; 2020 Apr; 32(17):175301. PubMed ID: 31914431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering the Band Structures of Zigzag Blue Phosphorene and Arsenene Nanoribbons by Incorporating Edge Corrugations: A First Principles Exploration.
    Dey A; Chakraborty D
    J Nanosci Nanotechnol; 2021 Dec; 21(12):5929-5936. PubMed ID: 34229788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spin filtering controller induced by phase transitions in fluorographane.
    Sun C; Jiang Y; Wang Y; Liu XC; Wu Y; Ding Y; Zhang G
    RSC Adv; 2021 Nov; 11(57):35718-35725. PubMed ID: 35492789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stable H-Terminated Edges, Variable Semiconducting Properties, and Solar Cell Applications of C
    Ding Y; Wang Y
    ACS Omega; 2018 Aug; 3(8):8777-8786. PubMed ID: 31459010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signature of excitonic insulators in phosphorene nanoribbons.
    Felipe Pereira de Oliveira A; Luisa da Rosa A; Cavalheiro Dias A
    J Phys Condens Matter; 2024 May; 36(34):. PubMed ID: 38744299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tweaking the magnetism of MoS2 nanoribbon with hydrogen and carbon passivation.
    Sagynbaeva M; Panigrahi P; Yunguo L; Ramzan M; Ahuja R
    Nanotechnology; 2014 Apr; 25(16):165703. PubMed ID: 24675167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphenylene nanoribbons: electronic, optical and thermoelectric properties from first-principles calculations.
    Meftakhutdinov RM; Sibatov RT; Kochaev AI
    J Phys Condens Matter; 2020 May; 32(34):. PubMed ID: 32303006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.