BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 33000849)

  • 1. Discovery of anthocyanins from cranberry extract as pancreatic lipase inhibitors using a combined approach of ultrafiltration, molecular simulation and spectroscopy.
    Xie L; Xie J; Xu Y; Chen W
    Food Funct; 2020 Oct; 11(10):8527-8536. PubMed ID: 33000849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of anthocyanins in cranberry fruit and cranberry fruit products by high-performance liquid chromatography with ultraviolet detection: single-laboratory validation.
    Brown PN; Shipley PR
    J AOAC Int; 2011; 94(2):459-66. PubMed ID: 21563679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibitory effects of muscadine anthocyanins on α-glucosidase and pancreatic lipase activities.
    You Q; Chen F; Wang X; Luo PG; Jiang Y
    J Agric Food Chem; 2011 Sep; 59(17):9506-11. PubMed ID: 21797278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyanidin and cyanidin-3-glucoside derived from Vigna unguiculata act as noncompetitive inhibitors of pancreatic lipase.
    Vijayaraj P; Nakagawa H; Yamaki K
    J Food Biochem; 2019 Mar; 43(3):e12774. PubMed ID: 31353559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the synergistic inhibitory effect of cyanidin-3-O-glucoside and catechin on pancreatic lipase.
    Wang Y; Chen L; Liu H; Xie J; Yin W; Xu Z; Ma H; Wu W; Zheng M; Liu M; Liu J
    Food Chem; 2023 Mar; 404(Pt B):134672. PubMed ID: 36323025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring Aurone Derivatives as Potential Human Pancreatic Lipase Inhibitors through Molecular Docking and Molecular Dynamics Simulations.
    Nguyen PTV; Huynh HA; Truong DV; Tran TD; Vo CT
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33066044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of cranberry juice consumption on antioxidant status and biomarkers relating to heart disease and cancer in healthy human volunteers.
    Duthie SJ; Jenkinson AM; Crozier A; Mullen W; Pirie L; Kyle J; Yap LS; Christen P; Duthie GG
    Eur J Nutr; 2006 Mar; 45(2):113-22. PubMed ID: 16032375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro α-amylase and pancreatic lipase inhibitory activity of Cornus mas L. and Cornus alba L. fruit extracts.
    Świerczewska A; Buchholz T; Melzig MF; Czerwińska ME
    J Food Drug Anal; 2019 Jan; 27(1):249-258. PubMed ID: 30648578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibitory Effect of Persimmon Tannin on Pancreatic Lipase and the Underlying Mechanism in Vitro.
    Zhu W; Jia Y; Peng J; Li CM
    J Agric Food Chem; 2018 Jun; 66(24):6013-6021. PubMed ID: 29806464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioassay-guided separation of an alpha-amylase inhibitor anthocyanin from Vaccinium arctostaphylos berries.
    Nickavar B; Amin G
    Z Naturforsch C J Biosci; 2010; 65(9-10):567-70. PubMed ID: 21138057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafiltration coupled with high-performance liquid chromatography and quadrupole-time-of-flight mass spectrometry for screening lipase binders from different extracts of Dendrobium officinale.
    Tao Y; Cai H; Li W; Cai B
    Anal Bioanal Chem; 2015 Aug; 407(20):6081-93. PubMed ID: 26018630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pancreatic lipase inhibitors: The road voyaged and successes.
    Kumar A; Chauhan S
    Life Sci; 2021 Apr; 271():119115. PubMed ID: 33515565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Anthocyanins from Four Kinds of Berries and Their Inhibition Activity to α-Glycosidase and Protein Tyrosine Phosphatase 1B by HPLC-FT-ICR MS/MS.
    Xiao T; Guo Z; Sun B; Zhao Y
    J Agric Food Chem; 2017 Aug; 65(30):6211-6221. PubMed ID: 28699753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the biochemical components and chromatic properties of the juice of Vaccinium macrocarpon Aiton and Vaccinium oxycoccos L.
    Cesonienė L; Daubaras R; Jasutienė I; Venclovienė J; Miliauskienė I
    Plant Foods Hum Nutr; 2011 Sep; 66(3):238-44. PubMed ID: 21735163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of antiviral phytochemicals from cranberry as potential inhibitors of SARS-CoV-2 main protease (M
    Pillai U J; Cherian L; Taunk K; Iype E; Dutta M
    Int J Biol Macromol; 2024 Mar; 261(Pt 1):129655. PubMed ID: 38266830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of 1H-indene-(1,3,5,6)-tetrol derivatives as potent pancreatic lipase inhibitors using molecular docking and molecular dynamics approach.
    Kalathiya U; Padariya M; Baginski M
    Biotechnol Appl Biochem; 2016 Nov; 63(6):765-778. PubMed ID: 26265531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retention of antioxidant capacity of vacuum microwave dried cranberry.
    Leusink GJ; Kitts DD; Yaghmaee P; Durance T
    J Food Sci; 2010 Apr; 75(3):C311-6. PubMed ID: 20492285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anti- and pro-lipase activity of selected medicinal, herbal and aquatic plants, and structure elucidation of an anti-lipase compound.
    Ado MA; Abas F; Mohammed AS; Ghazali HM
    Molecules; 2013 Nov; 18(12):14651-69. PubMed ID: 24287996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Medicinal plant phytochemicals and their inhibitory activities against pancreatic lipase: molecular docking combined with molecular dynamics simulation approach.
    Ahmed B; Ali Ashfaq U; Usman Mirza M
    Nat Prod Res; 2018 May; 32(10):1123-1129. PubMed ID: 28446025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate-like water soluble lipase inhibitors from Filipendula kamtschatica.
    Kato E; Yama M; Nakagomi R; Shibata T; Hosokawa K; Kawabata J
    Bioorg Med Chem Lett; 2012 Oct; 22(20):6410-2. PubMed ID: 22995617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.