These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 33000856)

  • 1. Isolated flat bands and physics of mixed dimensions in a 2D covalent organic framework.
    Wang J; Quek SY
    Nanoscale; 2020 Oct; 12(39):20279-20286. PubMed ID: 33000856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exotic Topological Bands and Quantum States in Metal-Organic and Covalent-Organic Frameworks.
    Jiang W; Ni X; Liu F
    Acc Chem Res; 2021 Jan; 54(2):416-426. PubMed ID: 33400497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering of flat bands and Dirac bands in two-dimensional covalent organic frameworks (COFs): relationships among molecular orbital symmetry, lattice symmetry, and electronic-structure characteristics.
    Ni X; Li H; Liu F; Brédas JL
    Mater Horiz; 2022 Jan; 9(1):88-98. PubMed ID: 34866138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple molecular design for tunable two-dimensional imine covalent organic frameworks for optoelectronic applications.
    Yadav VK; Mir SH; Mishra V; Gopakumar TG; Singh JK
    Phys Chem Chem Phys; 2020 Sep; 22(37):21360-21368. PubMed ID: 32940303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional π-Conjugated Two-Dimensional Covalent Organic Frameworks.
    Babu HV; Bai MGM; Rajeswara Rao M
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):11029-11060. PubMed ID: 30817118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasi-1D physics in metal-organic frameworks: MIL-47(V) from first principles.
    Vanpoucke DE; Jaeken JW; De Baerdemacker S; Lejaeghere K; Van Speybroeck V
    Beilstein J Nanotechnol; 2014; 5():1738-48. PubMed ID: 25383285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Designing 1D correlated-electron states by non-Euclidean topography of 2D monolayers.
    Gupta S; Yu H; Yakobson BI
    Nat Commun; 2022 Jun; 13(1):3103. PubMed ID: 35662243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-Free Magnetism in Chemically Doped Covalent Organic Frameworks.
    Yu H; Wang D
    J Am Chem Soc; 2020 Jun; 142(25):11013-11021. PubMed ID: 32423206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of Charge Carriers and Band Structure in 2D Monolayer Molybdenum Disulfide via Covalent Functionalization.
    Jones LO; Mosquera MA; Ratner MA; Schatz GC
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4607-4615. PubMed ID: 31898887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiscale Modeling Strategy of 2D Covalent Organic Frameworks Confined at an Air-Water Interface.
    Ortega-Guerrero A; Sahabudeen H; Croy A; Dianat A; Dong R; Feng X; Cuniberti G
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):26411-26420. PubMed ID: 34034486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Realization of Lieb lattice in covalent-organic frameworks with tunable topology and magnetism.
    Cui B; Zheng X; Wang J; Liu D; Xie S; Huang B
    Nat Commun; 2020 Jan; 11(1):66. PubMed ID: 31898693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Lieb-like lattice in a covalent-organic framework and its Stoner ferromagnetism.
    Jiang W; Huang H; Liu F
    Nat Commun; 2019 May; 10(1):2207. PubMed ID: 31101812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stable 2D Heteroporous Covalent Organic Frameworks for Efficient Ionic Conduction.
    Xie Z; Wang B; Yang Z; Yang X; Yu X; Xing G; Zhang Y; Chen L
    Angew Chem Int Ed Engl; 2019 Oct; 58(44):15742-15746. PubMed ID: 31433550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large Out-of-Plane Deformations of Two-Dimensional Covalent Organic Framework (COF) Sheets.
    Li H; Brédas JL
    J Phys Chem Lett; 2018 Aug; 9(15):4215-4220. PubMed ID: 29983057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling double flat bands in a quadrangular-star lattice.
    Jiang J; Jiang W; Zhang S; Xie Y; Chen Y
    Nanoscale; 2023 May; 15(19):8825-8831. PubMed ID: 37114430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-Dimensional Covalent Organic Frameworks: From Topology Design to Applications.
    Gui B; Lin G; Ding H; Gao C; Mal A; Wang C
    Acc Chem Res; 2020 Oct; 53(10):2225-2234. PubMed ID: 32897686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emergence of an Antiferromagnetic Mott Insulating Phase in Hexagonal π-Conjugated Covalent Organic Frameworks.
    Thomas S; Li H; Bredas JL
    Adv Mater; 2019 Apr; 31(17):e1900355. PubMed ID: 30847999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revealing the Local Electronic Structure of a Single-Layer Covalent Organic Framework through Electronic Decoupling.
    Rizzo DJ; Dai Q; Bronner C; Veber G; Smith BJ; Matsumoto M; Thomas S; Nguyen GD; Forrester PR; Zhao W; Jørgensen JH; Dichtel WR; Fischer FR; Li H; Bredas JL; Crommie MF
    Nano Lett; 2020 Feb; 20(2):963-970. PubMed ID: 31910625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diverse electronic properties of 2D layered Se-containing materials composed of quasi-1D atomic chains.
    Li Y; Sun Y; Na G; Saidi WA; Zhang L
    Phys Chem Chem Phys; 2020 Jan; 22(4):2122-2129. PubMed ID: 31907508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exciton Spatial Coherence and Optical Gain in Colloidal Two-Dimensional Cadmium Chalcogenide Nanoplatelets.
    Li Q; Lian T
    Acc Chem Res; 2019 Sep; 52(9):2684-2693. PubMed ID: 31433164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.