BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

960 related articles for article (PubMed ID: 33000883)

  • 1. Mechanical Recycling of Packaging Plastics: A Review.
    Schyns ZOG; Shaver MP
    Macromol Rapid Commun; 2021 Feb; 42(3):e2000415. PubMed ID: 33000883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recycling potential of post-consumer plastic packaging waste in Finland.
    Dahlbo H; Poliakova V; Mylläri V; Sahimaa O; Anderson R
    Waste Manag; 2018 Jan; 71():52-61. PubMed ID: 29097129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Closing the loop for PET, PE and PP waste from households: Influence of material properties and product design for plastic recycling.
    Eriksen MK; Christiansen JD; Daugaard AE; Astrup TF
    Waste Manag; 2019 Aug; 96():75-85. PubMed ID: 31376972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulating the Crystallinity of a Circular Plastic towards Packaging Material with Outstanding Barrier Properties.
    Sangroniz A; Zhu JB; Etxeberria A; Chen EY; Sardon H
    Macromol Rapid Commun; 2022 Jul; 43(13):e2200008. PubMed ID: 35182407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical and chemical recycling of solid plastic waste.
    Ragaert K; Delva L; Van Geem K
    Waste Manag; 2017 Nov; 69():24-58. PubMed ID: 28823699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Life cycle environmental impacts of chemical recycling via pyrolysis of mixed plastic waste in comparison with mechanical recycling and energy recovery.
    Jeswani H; Krüger C; Russ M; Horlacher M; Antony F; Hann S; Azapagic A
    Sci Total Environ; 2021 May; 769():144483. PubMed ID: 33486181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving the circular economy via hydrothermal processing of high-density waste plastics.
    Helmer Pedersen T; Conti F
    Waste Manag; 2017 Oct; 68():24-31. PubMed ID: 28623021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recycling of post-consumer plastic packaging waste in the EU: Recovery rates, material flows, and barriers.
    Antonopoulos I; Faraca G; Tonini D
    Waste Manag; 2021 May; 126():694-705. PubMed ID: 33887695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiblock Copolymers for Recycling Polyethylene-Poly(ethylene terephthalate) Mixed Waste.
    Nomura K; Peng X; Kim H; Jin K; Kim HJ; Bratton AF; Bond CR; Broman AE; Miller KM; Ellison CJ
    ACS Appl Mater Interfaces; 2020 Feb; 12(8):9726-9735. PubMed ID: 32017525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scientometric analysis of the development of plastic packaging considering the circular economy and clean technologies: A review.
    Lima TCH; Machado EL; de Cassia de Souza Schneider R
    Waste Manag Res; 2023 Jul; 41(7):1188-1202. PubMed ID: 36922703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predictive model for the Dutch post-consumer plastic packaging recycling system and implications for the circular economy.
    Brouwer MT; Thoden van Velzen EU; Augustinus A; Soethoudt H; De Meester S; Ragaert K
    Waste Manag; 2018 Jan; 71():62-85. PubMed ID: 29107509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances in nanotechnology-based modifications of micro/nano PET plastics for green energy applications.
    Anusha JR; Citarasu T; Uma G; Vimal S; Kamaraj C; Kumar V; Muzammil K; Mani Sankar M
    Chemosphere; 2024 Mar; 352():141417. PubMed ID: 38340992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Circular economy of plastic packaging: Current practice and perspectives in Austria.
    Van Eygen E; Laner D; Fellner J
    Waste Manag; 2018 Feb; 72():55-64. PubMed ID: 29196054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polydiketoenamines for a Circular Plastics Economy.
    Helms BA
    Acc Chem Res; 2022 Oct; 55(19):2753-2765. PubMed ID: 36108255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterisation of source-separated, rigid plastic waste and evaluation of recycling initiatives: Effects of product design and source-separation system.
    Eriksen MK; Astrup TF
    Waste Manag; 2019 Mar; 87():161-172. PubMed ID: 31109515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyethylene terephthalate waste derived nanomaterials (WDNMs) and its utilization in electrochemical devices.
    Manjunathan J; Pavithra K; Nangan S; Prakash S; Saxena KK; Sharma K; Muzammil K; Verma D; Gnanapragasam JR; Ramasubburayan R; Revathi M
    Chemosphere; 2024 Apr; 353():141541. PubMed ID: 38423149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental and Socioeconomic Impacts of Poly(ethylene terephthalate) (PET) Packaging Management Strategies in the EU.
    Andreasi Bassi S; Tonini D; Saveyn H; Astrup TF
    Environ Sci Technol; 2022 Jan; 56(1):501-511. PubMed ID: 34875164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Advances in Biological Recycling of Polyethylene Terephthalate (PET) Plastic Wastes.
    Soong YV; Sobkowicz MJ; Xie D
    Bioengineering (Basel); 2022 Feb; 9(3):. PubMed ID: 35324787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Closing the Carbon Loop in the Circular Plastics Economy.
    Schirmeister CG; Mülhaupt R
    Macromol Rapid Commun; 2022 Jul; 43(13):e2200247. PubMed ID: 35635841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roadmap to sustainable plastic waste management: a focused study on recycling PET for triboelectric nanogenerator production in Singapore and India.
    Lai WL; Sharma S; Roy S; Maji PK; Sharma B; Ramakrishna S; Goh KL
    Environ Sci Pollut Res Int; 2022 Jul; 29(34):51234-51268. PubMed ID: 35604599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 48.