These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 33001065)

  • 1. A two-chip acoustofluidic particle manipulation platform with a detachable and reusable surface acoustic wave device.
    Qian J; Ren J; Liu Y; Lam RHW; Lee JE
    Analyst; 2020 Nov; 145(23):7752-7758. PubMed ID: 33001065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detachable Acoustofluidic System for Particle Separation via a Traveling Surface Acoustic Wave.
    Ma Z; Collins DJ; Ai Y
    Anal Chem; 2016 May; 88(10):5316-23. PubMed ID: 27086552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustofluidic localization of sparse particles on a piezoelectric resonant sensor for nanogram-scale mass measurements.
    Qian J; Begum H; Lee JE
    Microsyst Nanoeng; 2021; 7():61. PubMed ID: 34567773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing coupling layer and superstrate thickness in attachable acoustofluidic devices.
    Kolesnik K; Rajagopal V; Collins DJ
    Ultrasonics; 2024 Feb; 137():107202. PubMed ID: 37979521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capillary-based, multifunctional manipulation of particles and fluids
    Pei Z; Tian Z; Yang S; Shen L; Hao N; Naquin TD; Li T; Sun L; Rong W; Huang TJ
    J Phys D Appl Phys; 2024 Aug; 57(30):. PubMed ID: 38800708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detachable acoustofluidic droplet-sorter.
    Das D; Huang SH; Weng CL; Yu CH; Hsu CK; Lee YC; Cheng HC; Chuang HS
    Anal Chim Acta; 2024 Sep; 1321():343043. PubMed ID: 39155105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lamb to Rayleigh Wave Conversion on Superstrates as a Means to Facilitate Disposable Acoustomicrofluidic Applications.
    Wong KS; Lee L; Hung YM; Yeo LY; Tan MK
    Anal Chem; 2019 Oct; 91(19):12358-12368. PubMed ID: 31500406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Residue-free acoustofluidic manipulation of microparticles via removal of microchannel anechoic corner.
    Khan MS; Sahin MA; Destgeer G; Park J
    Ultrason Sonochem; 2022 Sep; 89():106161. PubMed ID: 36088893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfabricated acoustofluidic membrane acoustic waveguide actuator for highly localized in-droplet dynamic particle manipulation.
    Vachon P; Merugu S; Sharma J; Lal A; Ng EJ; Koh Y; Lee JE; Lee C
    Lab Chip; 2023 Mar; 23(7):1865-1878. PubMed ID: 36852544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustofluidic Diversity Achieved by Multiple Modes of Acoustic Waves Generated on Piezoelectric-Film-Coated Aluminum Sheets.
    Wang Y; Li X; Meng H; Tao R; Qian J; Fu C; Luo J; Xie J; Fu Y
    ACS Appl Mater Interfaces; 2024 Aug; 16(34):45119-45130. PubMed ID: 39143893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling of SAW-PDMS acoustofluidics: physical fields and particle motions influenced by different descriptions of the PDMS domain.
    Ni Z; Yin C; Xu G; Xie L; Huang J; Liu S; Tu J; Guo X; Zhang D
    Lab Chip; 2019 Aug; 19(16):2728-2740. PubMed ID: 31292597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acoustofluidic patterning in glass capillaries using travelling acoustic waves based on thin film flexible platform.
    Wang Q; Maramizonouz S; Stringer Martin M; Zhang J; Ong HL; Liu Q; Yang X; Rahmati M; Torun H; Ng WP; Wu Q; Binns R; Fu Y
    Ultrasonics; 2024 Jan; 136():107149. PubMed ID: 37703751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Novel Detachable, Reusable, and Versatile Acoustic Tweezer Manipulation Platform for Biochemical Analysis and Detection Systems.
    Liu Y; Ji M; Zhang Y; Qiao X; Yu N; Ding C; Yang L; Feng R; Chou X; Geng W
    Biosensors (Basel); 2022 Dec; 12(12):. PubMed ID: 36551146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manipulation of self-assembled three-dimensional architecture in reusable acoustofluidic device.
    Nguyen TD; Tran VT; Du H
    Electrophoresis; 2021 Nov; 42(21-22):2375-2382. PubMed ID: 33765330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Femtosecond Laser Micromachining of the Mask for Acoustofluidic Device Preparation.
    Wang Y; Qian J
    ACS Omega; 2023 Feb; 8(8):7838-7844. PubMed ID: 36873004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental and numerical studies on standing surface acoustic wave microfluidics.
    Mao Z; Xie Y; Guo F; Ren L; Huang PH; Chen Y; Rufo J; Costanzo F; Huang TJ
    Lab Chip; 2016 Feb; 16(3):515-24. PubMed ID: 26698361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Pumpless Acoustofluidic Platform for Size-Selective Concentration and Separation of Microparticles.
    Ahmed H; Destgeer G; Park J; Jung JH; Ahmad R; Park K; Sung HJ
    Anal Chem; 2017 Dec; 89(24):13575-13581. PubMed ID: 29156880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and characterisation of acoustofluidic devices using detachable electrodes made from PCB.
    Mikhaylov R; Wu F; Wang H; Clayton A; Sun C; Xie Z; Liang D; Dong Y; Yuan F; Moschou D; Wu Z; Shen MH; Yang J; Fu Y; Yang Z; Burton C; Errington RJ; Wiltshire M; Yang X
    Lab Chip; 2020 May; 20(10):1807-1814. PubMed ID: 32319460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustofluidic bacteria separation.
    Li S; Ma F; Bachman H; Cameron CE; Zeng X; Huang TJ
    J Micromech Microeng; 2017 Jan; 27(1):. PubMed ID: 28798539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Power-controlled acoustofluidic manipulation of microparticles.
    Wu F; Wang H; Sun C; Yuan F; Xie Z; Mikhaylov R; Wu Z; Shen M; Yang J; Evans W; Fu Y; Tian L; Yang X
    Ultrasonics; 2023 Sep; 134():107087. PubMed ID: 37406388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.