BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 33001080)

  • 1. A novel expanded metal-organic framework for balancing volumetric and gravimetric methane storage working capacities.
    Wen HM; Shao K; Zhou W; Li B; Chen B
    Chem Commun (Camb); 2020 Nov; 56(86):13117-13120. PubMed ID: 33001080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Metal-Organic Framework with Optimized Porosity and Functional Sites for High Gravimetric and Volumetric Methane Storage Working Capacities.
    Wen HM; Li B; Li L; Lin RB; Zhou W; Qian G; Chen B
    Adv Mater; 2018 Apr; 30(16):e1704792. PubMed ID: 29517138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning Open Metal Site-Free
    Zhang ZH; Fang H; Xue DX; Bai J
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):44956-44963. PubMed ID: 34498839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Balancing volumetric and gravimetric uptake in highly porous materials for clean energy.
    Chen Z; Li P; Anderson R; Wang X; Zhang X; Robison L; Redfern LR; Moribe S; Islamoglu T; Gómez-Gualdrón DA; Yildirim T; Stoddart JF; Farha OK
    Science; 2020 Apr; 368(6488):297-303. PubMed ID: 32299950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A porous metal-organic framework with dynamic pyrimidine groups exhibiting record high methane storage working capacity.
    Li B; Wen HM; Wang H; Wu H; Tyagi M; Yildirim T; Zhou W; Chen B
    J Am Chem Soc; 2014 Apr; 136(17):6207-10. PubMed ID: 24730649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reticular Synthesis of HKUST-like tbo-MOFs with Enhanced CH4 Storage.
    Spanopoulos I; Tsangarakis C; Klontzas E; Tylianakis E; Froudakis G; Adil K; Belmabkhout Y; Eddaoudi M; Trikalitis PN
    J Am Chem Soc; 2016 Feb; 138(5):1568-74. PubMed ID: 26694977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A microporous metal-organic framework with polarized trifluoromethyl groups for high methane storage.
    Chang G; Li B; Wang H; Bao Z; Yildirim T; Yao Z; Xiang S; Zhou W; Chen B
    Chem Commun (Camb); 2015 Oct; 51(79):14789-92. PubMed ID: 26300179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methane storage in metal-organic frameworks: current records, surprise findings, and challenges.
    Peng Y; Krungleviciute V; Eryazici I; Hupp JT; Farha OK; Yildirim T
    J Am Chem Soc; 2013 Aug; 135(32):11887-94. PubMed ID: 23841800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High methane storage and working capacities in a NbO-type metal-organic framework.
    Song C; Liu H; Jiao J; Bai D; Zhou W; Yildirim T; He Y
    Dalton Trans; 2016 May; 45(18):7559-62. PubMed ID: 27083013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fine-Tuning a Robust Metal-Organic Framework toward Enhanced Clean Energy Gas Storage.
    Chen Z; Mian MR; Lee SJ; Chen H; Zhang X; Kirlikovali KO; Shulda S; Melix P; Rosen AS; Parilla PA; Gennett T; Snurr RQ; Islamoglu T; Yildirim T; Farha OK
    J Am Chem Soc; 2021 Nov; 143(45):18838-18843. PubMed ID: 34752071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneously high gravimetric and volumetric methane uptake characteristics of the metal-organic framework NU-111.
    Peng Y; Srinivas G; Wilmer CE; Eryazici I; Snurr RQ; Hupp JT; Yildirim T; Farha OK
    Chem Commun (Camb); 2013 Apr; 49(29):2992-4. PubMed ID: 23459705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-capacity methane storage in metal-organic frameworks M2(dhtp): the important role of open metal sites.
    Wu H; Zhou W; Yildirim T
    J Am Chem Soc; 2009 Apr; 131(13):4995-5000. PubMed ID: 19275154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ligand Tailoring Strategy of a Metal-Organic Framework for Optimizing Methane Storage Working Capacities.
    Chen JR; Luo YQ; He S; Zhou HL; Huang XC
    Inorg Chem; 2022 Jul; 61(27):10417-10424. PubMed ID: 35767723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water-Stable
    Tsangarakis C; Azmy A; Tampaxis C; Zibouche N; Klontzas E; Tylianakis E; Froudakis GE; Steriotis T; Spanopoulos I; Trikalitis PN
    Inorg Chem; 2023 Apr; 62(14):5496-5504. PubMed ID: 36976265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using Low-Pressure Methane Adsorption Isotherms for Higher-Throughput Screening of Methane Storage Materials.
    Korman KJ; Decker GE; Dworzak MR; Deegan MM; Antonio AM; Taggart GA; Bloch ED
    ACS Appl Mater Interfaces; 2020 Sep; 12(36):40318-40327. PubMed ID: 32786240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MOF Crystal Chemistry Paving the Way to Gas Storage Needs: Aluminum-Based soc-MOF for CH4, O2, and CO2 Storage.
    Alezi D; Belmabkhout Y; Suyetin M; Bhatt PM; Weseliński ŁJ; Solovyeva V; Adil K; Spanopoulos I; Trikalitis PN; Emwas AH; Eddaoudi M
    J Am Chem Soc; 2015 Oct; 137(41):13308-18. PubMed ID: 26364990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High uptakes of methane in Li-doped 3D covalent organic frameworks.
    Lan J; Cao D; Wang W
    Langmuir; 2010 Jan; 26(1):220-6. PubMed ID: 20038169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A microporous metal-organic framework with naphthalene diimide groups for high methane storage.
    Ye Y; Lin RB; Cui H; Alsalme A; Zhou W; Yildirim T; Zhang Z; Xiang S; Chen B
    Dalton Trans; 2020 Mar; 49(12):3658-3661. PubMed ID: 31267121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A microporous metal-organic framework of a rare sty topology for high CH4 storage at room temperature.
    Duan X; Yu J; Cai J; He Y; Wu C; Zhou W; Yildirim T; Zhang Z; Xiang S; O'Keeffe M; Chen B; Qian G
    Chem Commun (Camb); 2013 Mar; 49(20):2043-5. PubMed ID: 23385349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inserting Amide into NOTT-101 to Sharply Enhance Volumetric and Gravimetric Methane Storage Working Capacity.
    Zhang M; Chen C; Shi Z; Huang K; Fu W; Zhou W
    Inorg Chem; 2019 Oct; 58(20):13782-13787. PubMed ID: 31591884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.