These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 33001620)

  • 1. Correction to "Aqueous-Processed Inorganic Thin-Film Solar Cells Based on CdSe
    Zeng Q; Chen Z; Zhao Y; Du X; Liu F; Jin G; Dong F; Zhang H; Yang B
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):47111. PubMed ID: 33001620
    [No Abstract]   [Full Text] [Related]  

  • 2. Aqueous-Processed Inorganic Thin-Film Solar Cells Based on CdSe(x)Te(1-x) Nanocrystals: The Impact of Composition on Photovoltaic Performance.
    Zeng Q; Chen Z; Zhao Y; Du X; Liu F; Jin G; Dong F; Zhang H; Yang B
    ACS Appl Mater Interfaces; 2015 Oct; 7(41):23223-30. PubMed ID: 26436430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rationally Controlled Synthesis of CdSe
    Wen S; Li M; Yang J; Mei X; Wu B; Liu X; Heng J; Qin D; Hou L; Xu W; Wang D
    Nanomaterials (Basel); 2017 Nov; 7(11):. PubMed ID: 29117132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-performance hole-extraction layer of sol-gel-processed NiO nanocrystals for inverted planar perovskite solar cells.
    Zhu Z; Bai Y; Zhang T; Liu Z; Long X; Wei Z; Wang Z; Zhang L; Wang J; Yan F; Yang S
    Angew Chem Int Ed Engl; 2014 Nov; 53(46):12571-5. PubMed ID: 25044246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the photovoltaic response of oleylamine and inorganic ligand-capped CuInSe2 nanocrystals.
    Stolle CJ; Panthani MG; Harvey TB; Akhavan VA; Korgel BA
    ACS Appl Mater Interfaces; 2012 May; 4(5):2757-61. PubMed ID: 22524385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Efficiency Aqueous-Processed Polymer/CdTe Nanocrystals Planar Heterojunction Solar Cells with Optimized Band Alignment and Reduced Interfacial Charge Recombination.
    Zeng Q; Hu L; Cui J; Feng T; Du X; Jin G; Liu F; Ji T; Li F; Zhang H; Yang B
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):31345-31351. PubMed ID: 28876894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning Bandgap of p-Type Cu
    Yi Q; Wu J; Zhao J; Wang H; Hu J; Dai X; Zou G
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1602-1608. PubMed ID: 27996233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward High-Performance Organic-Inorganic Hybrid Solar Cells: Bringing Conjugated Polymers and Inorganic Nanocrystals in Close Contact.
    He M; Qiu F; Lin Z
    J Phys Chem Lett; 2013 Jun; 4(11):1788-96. PubMed ID: 26283110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid morphology dependence of CdTe:CdSe bulk-heterojunction solar cells.
    Tan F; Qu S; Zhang W; Wang Z
    Nanoscale Res Lett; 2014; 9(1):593. PubMed ID: 25386107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid solar cells with prescribed nanoscale morphologies based on hyperbranched semiconductor nanocrystals.
    Gur I; Fromer NA; Chen CP; Kanaras AG; Alivisatos AP
    Nano Lett; 2007 Feb; 7(2):409-14. PubMed ID: 17298008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aqueous-solution-processable metal oxides for high-performance organic and perovskite solar cells.
    Lou YH; Wang ZK
    Nanoscale; 2017 Sep; 9(36):13506-13514. PubMed ID: 28868561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-efficiency aqueous-solution-processed hybrid solar cells based on P3HT dots and CdTe nanocrystals.
    Yao S; Chen Z; Li F; Xu B; Song J; Yan L; Jin G; Wen S; Wang C; Yang B; Tian W
    ACS Appl Mater Interfaces; 2015 Apr; 7(13):7146-52. PubMed ID: 25781480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perovskite Quantum Dot Photovoltaic Materials beyond the Reach of Thin Films: Full-Range Tuning of A-Site Cation Composition.
    Hazarika A; Zhao Q; Gaulding EA; Christians JA; Dou B; Marshall AR; Moot T; Berry JJ; Johnson JC; Luther JM
    ACS Nano; 2018 Oct; 12(10):10327-10337. PubMed ID: 30251834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sulfide nanocrystal inks for dense Cu(In1-xGa(x))(S1-ySe(y))2 absorber films and their photovoltaic performance.
    Guo Q; Ford GM; Hillhouse HW; Agrawal R
    Nano Lett; 2009 Aug; 9(8):3060-5. PubMed ID: 19518118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of composition on the performance of sintered Cu(In,Ga)Se2 nanocrystal thin-film photovoltaic devices.
    Akhavan VA; Harvey TB; Stolle CJ; Ostrowski DP; Glaz MS; Goodfellow BW; Panthani MG; Reid DK; Vanden Bout DA; Korgel BA
    ChemSusChem; 2013 Mar; 6(3):481-6. PubMed ID: 23401465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of a High-Quality Cu
    Zhao W; Yu F; Liu SF
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):634-639. PubMed ID: 30560655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase Transformations of Copper Sulfide Nanocrystals: Towards Highly Efficient Quantum-Dot-Sensitized Solar Cells.
    Liu L; Liu C; Fu W; Deng L; Zhong H
    Chemphyschem; 2016 Mar; 17(5):771-6. PubMed ID: 26337257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrogen-Mediated Growth of Silver Nanocrystals to Form UltraThin, High-Purity Silver-Film Electrodes with Broad band Transparency for Solar Cells.
    Zhao G; Shen W; Jeong E; Lee SG; Chung HS; Bae TS; Bae JS; Lee GH; Tang J; Yun J
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40901-40910. PubMed ID: 30379522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manipulating Depletion Region of Aqueous-Processed Nanocrystals Solar Cells with Widened Fermi Level Offset.
    Wang L; Chen N; Jin G; Feng T; Du X; Liu F; Sun H; Yang B; Sun H
    Small; 2018 Nov; 14(47):e1803072. PubMed ID: 30307697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of limiting factors affecting photovoltaic performance of low-temperature-processed TiO₂ films in dye-sensitized solar cells.
    Lee TY; Kim HS; Park NG
    Chemphyschem; 2014 Apr; 15(6):1098-105. PubMed ID: 24470338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.