These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 33001884)

  • 1. Voltage-controlled liquid crystal Pancharatnam-Berry phase lens with broadband operation and high photo-stability.
    Wang CT; Tam A; Meng C; Tseng MC; Li G; Kwok HS
    Opt Lett; 2020 Oct; 45(19):5323-5326. PubMed ID: 33001884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast-response Pancharatnam-Berry phase optical elements based on polymer-stabilized liquid crystal.
    Li S; Liu Y; Li Y; Liu S; Chen S; Su Y
    Opt Express; 2019 Aug; 27(16):22522-22531. PubMed ID: 31510543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast switching ferroelectric liquid crystal Pancharatnam-Berry lens.
    Ma Y; Tam AMW; Gan XT; Shi LY; Srivastava AK; Chigrinov VG; Kwok HS; Zhao JL
    Opt Express; 2019 Apr; 27(7):10079-10086. PubMed ID: 31045154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of Pancharatnam-Berry phase optical elements with highly stable polarization holography.
    Zhan T; Xiong J; Lee YH; Chen R; Wu ST
    Opt Express; 2019 Feb; 27(3):2632-2642. PubMed ID: 30732298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromatic aberration correction in bi-focal augmented reality display by the multi-layer Pancharatnam-Berry phase lens.
    Ma Y; Zhang W; Liu Y; Tian T; Luo D
    Opt Express; 2022 May; 30(11):18772-18780. PubMed ID: 36221671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-exposure fabrication of tunable Pancharatnam-Berry devices using a dye-doped liquid crystal.
    Li Y; Liu Y; Li S; Zhou P; Zhan T; Chen Q; Su Y; Wu ST
    Opt Express; 2019 Mar; 27(6):9054-9060. PubMed ID: 31052714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polarization-independent Pancharatnam-Berry phase lens system.
    Zhan T; Xiong J; Lee YH; Wu ST
    Opt Express; 2018 Dec; 26(26):35026-35033. PubMed ID: 30650917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Helicity-dependent forked vortex lens based on photo-patterned liquid crystals.
    Duan W; Chen P; Ge SJ; Wei BY; Hu W; Lu YQ
    Opt Express; 2017 Jun; 25(13):14059-14064. PubMed ID: 28788991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced optical edge detection based on a Pancharatnam-Berry flat lens with a large focal length.
    Li T; Yang Y; Liu X; Wu Y; Zhou Y; Huang S; Li X; Huang H
    Opt Lett; 2020 Jul; 45(13):3681-3684. PubMed ID: 32630929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Augmented reality near-eye display using Pancharatnam-Berry phase lenses.
    Moon S; Lee CK; Nam SW; Jang C; Lee GY; Seo W; Sung G; Lee HS; Lee B
    Sci Rep; 2019 Apr; 9(1):6616. PubMed ID: 31036828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ferroelectric liquid crystal Pancharatnam-Berry lens with a fast control of output light's polarization-handedness.
    Ma Y; Yin M; Shan Y; Liu X; Qi S; Chigrinov VG; Kwok HS; Zhao J
    Opt Express; 2021 Aug; 29(17):27472-27480. PubMed ID: 34615162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colorful multi-plane augmented reality display with dynamically tunable reflective Pancharatnam-Berry phase lens.
    Yan X; Zhu J; Liu M; Liu Y; Luo D
    Opt Express; 2024 Mar; 32(6):9161-9170. PubMed ID: 38571155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thin-film Pancharatnam lens with low f-number and high quality.
    Gao K; Cheng HH; Bhowmik AK; Bos PJ
    Opt Express; 2015 Oct; 23(20):26086-94. PubMed ID: 26480123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low f-Number Diffraction-Limited Pancharatnam-Berry Microlenses Enabled by Plasmonic Photopatterning of Liquid Crystal Polymers.
    Jiang M; Guo Y; Yu H; Zhou Z; Turiv T; Lavrentovich OD; Wei QH
    Adv Mater; 2019 May; 31(18):e1808028. PubMed ID: 30907480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale liquid crystal polymer Bragg polarization gratings.
    Xiang X; Kim J; Komanduri R; Escuti MJ
    Opt Express; 2017 Aug; 25(16):19298-19308. PubMed ID: 29041123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable Pancharatnam-Berry metasurface for dynamical and high-efficiency anomalous reflection.
    Xu HX; Wang GM; Cai T; Xiao J; Zhuang YQ
    Opt Express; 2016 Nov; 24(24):27836-27848. PubMed ID: 27906352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spin-decoupled metasurface for broadband and pixel-saving polarization rotation and wavefront control.
    Ji R; Song K; Guo X; Xie X; Zhao Y; Jin C; Wang S; Jiang C; Yin J; Liu Y; Zhai S; Zhao X; Lu W
    Opt Express; 2021 Aug; 29(16):25720-25730. PubMed ID: 34614895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spin-Controlled Multiple Pencil Beams and Vortex Beams with Different Polarizations Generated by Pancharatnam-Berry Coding Metasurfaces.
    Zhang L; Liu S; Li L; Cui TJ
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):36447-36455. PubMed ID: 28944660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controllable oscillated spin Hall effect of Bessel beam realized by liquid crystal Pancharatnam-Berry phase elements.
    Liu S; Qi S; Li Y; Wei B; Li P; Zhao J
    Light Sci Appl; 2022 Jul; 11(1):219. PubMed ID: 35821002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband and high-efficiency vortex beam generator based on a hybrid helix array.
    Fang C; Wu C; Gong Z; Zhao S; Sun A; Wei Z; Li H
    Opt Lett; 2018 Apr; 43(7):1538-1541. PubMed ID: 29601024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.