These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 33002140)

  • 1. Identification of quasi-stable water molecules near the Thr73-Lys13 catalytic diad of Bacillus sp. TB-90 urate oxidase by X-ray crystallography with controlled humidity.
    Hibi T; Itoh T
    J Biochem; 2021 Feb; 169(1):15-23. PubMed ID: 33002140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-directed mutagenesis, kinetic and inhibition studies of aspartate ammonia lyase from Bacillus sp. YM55-1.
    Puthan Veetil V; Raj H; Quax WJ; Janssen DB; Poelarends GJ
    FEBS J; 2009 Jun; 276(11):2994-3007. PubMed ID: 19490103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directed evolution to improve the catalytic efficiency of urate oxidase from Bacillus subtilis.
    Li W; Xu S; Zhang B; Zhu Y; Hua Y; Kong X; Sun L; Hong J
    PLoS One; 2017; 12(5):e0177877. PubMed ID: 28531234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. General base catalysis in the urate oxidase reaction: evidence for a novel Thr-Lys catalytic diad.
    Imhoff RD; Power NP; Borrok MJ; Tipton PA
    Biochemistry; 2003 Apr; 42(14):4094-100. PubMed ID: 12680763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperstabilization of Tetrameric Bacillus sp. TB-90 Urate Oxidase by Introducing Disulfide Bonds through Structural Plasticity.
    Hibi T; Kume A; Kawamura A; Itoh T; Fukada H; Nishiya Y
    Biochemistry; 2016 Feb; 55(4):724-32. PubMed ID: 26739254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and mechanistic studies of HpxO, a novel flavin adenine dinucleotide-dependent urate oxidase from Klebsiella pneumoniae.
    Hicks KA; O'Leary SE; Begley TP; Ealick SE
    Biochemistry; 2013 Jan; 52(3):477-87. PubMed ID: 23259842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Procatalytic ligand strain. Ionization and perturbation of 8-nitroxanthine at the urate oxidase active site.
    Doll C; Bell AF; Power N; Tonge PJ; Tipton PA
    Biochemistry; 2005 Aug; 44(34):11440-6. PubMed ID: 16114880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intersubunit salt bridges with a sulfate anion control subunit dissociation and thermal stabilization of Bacillus sp. TB-90 urate oxidase.
    Hibi T; Hayashi Y; Fukada H; Itoh T; Nago T; Nishiya Y
    Biochemistry; 2014 Jun; 53(24):3879-888. PubMed ID: 24897238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen pressurized X-ray crystallography: probing the dioxygen binding site in cofactorless urate oxidase and implications for its catalytic mechanism.
    Colloc'h N; Gabison L; Monard G; Altarsha M; Chiadmi M; Marassio G; Sopkova-de Oliveira Santos J; El Hajji M; Castro B; Abraini JH; Prangé T
    Biophys J; 2008 Sep; 95(5):2415-22. PubMed ID: 18375516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleotide sequence of the uricase gene from Bacillus sp. TB-90.
    Yamamoto K; Kojima Y; Kikuchi T; Shigyo T; Sugihara K; Takashio M; Emi S
    J Biochem; 1996 Jan; 119(1):80-4. PubMed ID: 8907179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic mechanism of scytalone dehydratase: site-directed mutagenisis, kinetic isotope effects, and alternate substrates.
    Basarab GS; Steffens JJ; Wawrzak Z; Schwartz RS; Lundqvist T; Jordan DB
    Biochemistry; 1999 May; 38(19):6012-24. PubMed ID: 10320327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for the catalytic mechanism of aspartate ammonia lyase.
    Fibriansah G; Veetil VP; Poelarends GJ; Thunnissen AM
    Biochemistry; 2011 Jul; 50(27):6053-62. PubMed ID: 21661762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of Bacillus fastidious uricase reveals an unexpected folding of the C-terminus residues crucial for thermostability under physiological conditions.
    Feng J; Wang L; Liu H; Yang X; Liu L; Xie Y; Liu M; Zhao Y; Li X; Wang D; Zhan CG; Liao F
    Appl Microbiol Biotechnol; 2015 Oct; 99(19):7973-86. PubMed ID: 25786739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of active-site residues in catalysis, substrate binding, cooperativity, and the reaction mechanism of the quinoprotein glycine oxidase.
    Mamounis KJ; Yukl ET; Davidson VL
    J Biol Chem; 2020 May; 295(19):6472-6481. PubMed ID: 32234764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complexed and ligand-free high-resolution structures of urate oxidase (Uox) from Aspergillus flavus: a reassignment of the active-site binding mode.
    Retailleau P; Colloc'h N; Vivarès D; Bonneté F; Castro B; El-Hajji M; Mornon JP; Monard G; Prangé T
    Acta Crystallogr D Biol Crystallogr; 2004 Mar; 60(Pt 3):453-62. PubMed ID: 14993669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The neutron structure of urate oxidase resolves a long-standing mechanistic conundrum and reveals unexpected changes in protonation.
    Oksanen E; Blakeley MP; El-Hajji M; Ryde U; Budayova-Spano M
    PLoS One; 2014; 9(1):e86651. PubMed ID: 24466188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structures of Bacillus caldovelox arginase in complex with substrate and inhibitors reveal new insights into activation, inhibition and catalysis in the arginase superfamily.
    Bewley MC; Jeffrey PD; Patchett ML; Kanyo ZF; Baker EN
    Structure; 1999 Apr; 7(4):435-48. PubMed ID: 10196128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Speeding up the product release: a second-sphere contribution from Tyr191 to the reactivity of L-lactate oxidase revealed in crystallographic and kinetic studies of site-directed variants.
    Stoisser T; Klimacek M; Wilson DK; Nidetzky B
    FEBS J; 2015 Nov; 282(21):4130-40. PubMed ID: 26260739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recapture of [S]-allantoin, the product of the two-step degradation of uric acid, by urate oxidase.
    Gabison L; Chiadmi M; Colloc'h N; Castro B; El Hajji M; Prangé T
    FEBS Lett; 2006 Apr; 580(8):2087-91. PubMed ID: 16545381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low resolution X-ray structure of γ-glutamyltranspeptidase from Bacillus licheniformis: opened active site cleft and a cluster of acid residues potentially involved in the recognition of a metal ion.
    Lin LL; Chen YY; Chi MC; Merlino A
    Biochim Biophys Acta; 2014 Sep; 1844(9):1523-9. PubMed ID: 24780583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.