These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 33002296)
21. Cilostazol-mediated reversion of γ-globin silencing is associated with a high level of HbF production: A potential therapeutic candidate for β-globin disorders. Ali H; Khan F; Musharraf SG Biomed Pharmacother; 2021 Oct; 142():112058. PubMed ID: 34426256 [TBL] [Abstract][Full Text] [Related]
22. KLF10 gene expression is associated with high fetal hemoglobin levels and with response to hydroxyurea treatment in β-hemoglobinopathy patients. Borg J; Phylactides M; Bartsakoulia M; Tafrali C; Lederer C; Felice AE; Papachatzopoulou A; Kourakli A; Stavrou EF; Christou S; Hou J; Karkabouna S; Lappa-Manakou C; Ozgur Z; van Ijcken W; von Lindern M; Grosveld FG; Georgitsi M; Kleanthous M; Philipsen S; Patrinos GP Pharmacogenomics; 2012 Oct; 13(13):1487-500. PubMed ID: 23057549 [TBL] [Abstract][Full Text] [Related]
23. Fetal globin gene repressors as drug targets for molecular therapies to treat the β-globinopathies. Suzuki M; Yamamoto M; Engel JD Mol Cell Biol; 2014 Oct; 34(19):3560-9. PubMed ID: 25022757 [TBL] [Abstract][Full Text] [Related]
24. Incidence of hemoglobinopathies and thalassemias in Northern Alberta. Establishment of reference intervals for HbF and HbA2. Rodriguez-Capote K; Higgins TN Clin Biochem; 2015 Jul; 48(10-11):698-702. PubMed ID: 25869492 [TBL] [Abstract][Full Text] [Related]
25. MIR29B mediates epigenetic mechanisms of HBG gene activation. Starlard-Davenport A; Smith A; Vu L; Li B; Pace BS Br J Haematol; 2019 Jul; 186(1):91-100. PubMed ID: 30891745 [TBL] [Abstract][Full Text] [Related]
26. Reactivation of Fetal Hemoglobin for Treating β-Thalassemia and Sickle Cell Disease. Cui S; Engel JD Adv Exp Med Biol; 2017; 1013():177-202. PubMed ID: 29127681 [TBL] [Abstract][Full Text] [Related]
27. Recent advances in epigenetic proteolysis targeting chimeras (Epi-PROTACs). Tomaselli D; Mautone N; Mai A; Rotili D Eur J Med Chem; 2020 Dec; 207():112750. PubMed ID: 32871345 [TBL] [Abstract][Full Text] [Related]
28. A natural DNMT1 mutation elevates the fetal hemoglobin level via epigenetic derepression of the γ-globin gene in β-thalassemia. Gong Y; Zhang X; Zhang Q; Zhang Y; Ye Y; Yu W; Shao C; Yan T; Huang J; Zhong J; Wang L; Li Y; Wang L; Xu X Blood; 2021 Mar; 137(12):1652-1657. PubMed ID: 33227819 [TBL] [Abstract][Full Text] [Related]
30. Comparative analysis of lentiviral gene transfer approaches designed to promote fetal hemoglobin production for the treatment of β-hemoglobinopathies. Daniel-Moreno A; Lamsfus-Calle A; Wilber A; Chambers CB; Johnston I; Antony JS; Epting T; Handgretinger R; Mezger M Blood Cells Mol Dis; 2020 Sep; 84():102456. PubMed ID: 32498026 [TBL] [Abstract][Full Text] [Related]
31. Phenotypic-screening generates active novel fetal globin-inducers that downregulate Bcl11a in a monkey model. Makino T; Haruyama M; Katayama K; Terashima H; Tsunemi T; Miyazaki K; Terakawa M; Yamashiro K; Yoshioka R; Maeda H Biochem Pharmacol; 2020 Jan; 171():113717. PubMed ID: 31751536 [TBL] [Abstract][Full Text] [Related]
32. Reawakening fetal hemoglobin: prospects for new therapies for the β-globin disorders. Bauer DE; Kamran SC; Orkin SH Blood; 2012 Oct; 120(15):2945-53. PubMed ID: 22904296 [TBL] [Abstract][Full Text] [Related]
33. Impact of epigenetic mechanisms on therapeutic approaches of hemoglobinopathies. Costa D; Capuano M; Sommese L; Napoli C Blood Cells Mol Dis; 2015 Aug; 55(2):95-100. PubMed ID: 26142322 [TBL] [Abstract][Full Text] [Related]
34. Revisiting fetal hemoglobin inducers in beta-hemoglobinopathies: a review of natural products, conventional and combinatorial therapies. Mukherjee M; Rahaman M; Ray SK; Shukla PC; Dolai TK; Chakravorty N Mol Biol Rep; 2022 Mar; 49(3):2359-2373. PubMed ID: 34822068 [TBL] [Abstract][Full Text] [Related]
35. Insight of fetal to adult hemoglobin switch: Genetic modulators and therapeutic targets. Hariharan P; Nadkarni A Blood Rev; 2021 Sep; 49():100823. PubMed ID: 33726930 [TBL] [Abstract][Full Text] [Related]
36. Efficacy and safety of long-term RN-1 treatment to increase HbF in baboons. Ibanez V; Vaitkus K; Rivers A; Molokie R; Cui S; Engel JD; DeSimone J; Lavelle D Blood; 2017 Jan; 129(2):260-263. PubMed ID: 27908882 [No Abstract] [Full Text] [Related]
37. Targeted fetal hemoglobin induction for treatment of beta hemoglobinopathies. Perrine SP; Pace BS; Faller DV Hematol Oncol Clin North Am; 2014 Apr; 28(2):233-48. PubMed ID: 24589264 [TBL] [Abstract][Full Text] [Related]
38. Cucurbitacin D induces fetal hemoglobin synthesis in K562 cells and human hematopoietic progenitors through activation of p38 pathway and stabilization of the γ-globin mRNA. Liu K; Xing H; Zhang S; Liu Sm; Fung Mc Blood Cells Mol Dis; 2010 Dec; 45(4):269-75. PubMed ID: 20926322 [TBL] [Abstract][Full Text] [Related]
39. The presence of F cells with a fetal phenotype in adults with hemoglobinopathies limits the utility of flow cytometry for quantitation of fetomaternal hemorrhage. Othman J; Orellana D; Chen LS; Russell M; Khoo TL Cytometry B Clin Cytom; 2018 Jul; 94(4):695-698. PubMed ID: 29072803 [TBL] [Abstract][Full Text] [Related]
40. Integrative microRNA and gene expression analysis identifies new drug repurposing candidates for fetal hemoglobin induction in β-hemoglobinopathies. Das SS; Sinha R; Chakravorty N Gene; 2019 Jul; 706():77-83. PubMed ID: 31048070 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]