BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 33002299)

  • 21. Production of biosurfactant lipopeptides Iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides.
    Kim PI; Ryu J; Kim YH; Chi YT
    J Microbiol Biotechnol; 2010 Jan; 20(1):138-45. PubMed ID: 20134245
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lipopeptides from Bacillus: unveiling biotechnological prospects-sources, properties, and diverse applications.
    Saiyam D; Dubey A; Malla MA; Kumar A
    Braz J Microbiol; 2024 Mar; 55(1):281-295. PubMed ID: 38216798
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of Antifungal Lipopeptide Biosurfactants Produced by Marine Bacterium
    Wu S; Liu G; Zhou S; Sha Z; Sun C
    Mar Drugs; 2019 Mar; 17(4):. PubMed ID: 30934847
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antimicrobial activity and spectroscopic characterization of surfactin class of lipopeptides from Bacillus amyloliquefaciens SR1.
    Nanjundan J; Ramasamy R; Uthandi S; Ponnusamy M
    Microb Pathog; 2019 Mar; 128():374-380. PubMed ID: 30695712
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surfactin/iturin A interactions may explain the synergistic effect of surfactin on the biological properties of iturin A.
    Maget-Dana R; Thimon L; Peypoux F; Ptak M
    Biochimie; 1992 Dec; 74(12):1047-51. PubMed ID: 1292612
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biocontrol activity of surfactin A purified from Bacillus NH-100 and NH-217 against rice bakanae disease.
    Sarwar A; Hassan MN; Imran M; Iqbal M; Majeed S; Brader G; Sessitsch A; Hafeez FY
    Microbiol Res; 2018 Apr; 209():1-13. PubMed ID: 29580617
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interactions of bioactive lipopeptides, iturin A and surfactin from Bacillus subtilis.
    Thimon L; Peypoux F; Maget-Dana R; Roux B; Michel G
    Biotechnol Appl Biochem; 1992 Oct; 16(2):144-51. PubMed ID: 1457050
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quinalphos Tolerant Endophytic Bacillus sp. Fcl1 and its Toxicity-Alleviating Effect in Vigna unguiculata.
    Juby S; Choyikutty D; Nayana AR; Jayachandran K; Radhakrishnan EK
    Curr Microbiol; 2021 Mar; 78(3):904-910. PubMed ID: 33580334
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The plant-associated Bacillus amyloliquefaciens strains MEP2 18 and ARP2 3 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease.
    Alvarez F; Castro M; Príncipe A; Borioli G; Fischer S; Mori G; Jofré E
    J Appl Microbiol; 2012 Jan; 112(1):159-74. PubMed ID: 22017648
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mass spectrometry identification of antifungal lipopeptides from Bacillus sp. BCLRB2 against Rhizoctonia solani and Sclerotinia sclerotiorum.
    Elkahoui S; Djébali N; Karkouch I; Ibrahim AH; Kalai L; Bachkovel S; Tabbene O; Limam F
    Prikl Biokhim Mikrobiol; 2014; 50(2):184-8. PubMed ID: 25272736
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibitory activity of bacterial lipopeptides against Fusarium oxysporum f.sp. Strigae.
    Assena MW; Pfannstiel J; Rasche F
    BMC Microbiol; 2024 Jun; 24(1):227. PubMed ID: 38937715
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improved Production of Two Anti-
    Ramchandran R; Ramesh S; A A; Thakur R; Chakrabarti A; Roy U
    Curr Pharm Biotechnol; 2020; 21(5):438-450. PubMed ID: 31804165
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Isolation and characterization of a high iturin yielding Bacillus velezensis UV mutant with improved antifungal activity.
    Kim YT; Kim SE; Lee WJ; Fumei Z; Cho MS; Moon JS; Oh HW; Park HY; Kim SU
    PLoS One; 2020; 15(12):e0234177. PubMed ID: 33270634
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of novel surfactin derivatives from NRPS modification of Bacillus subtilis and its antifungal activity against Fusarium moniliforme.
    Jiang J; Gao L; Bie X; Lu Z; Liu H; Zhang C; Lu F; Zhao H
    BMC Microbiol; 2016 Mar; 16():31. PubMed ID: 26957318
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Postharvest Biological Control of Colletotrichum acutatum on Apple by Bacillus subtilis HM1 and the Structural Identification of Antagonists.
    Kim HM; Lee KJ; Chae JC
    J Microbiol Biotechnol; 2015 Nov; 25(11):1954-9. PubMed ID: 26428548
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antifungal evaluation of fengycin isoforms isolated from Bacillus amyloliquefaciens PPL against Fusarium oxysporum f. sp. lycopersici.
    Kang BR; Park JS; Jung WJ
    Microb Pathog; 2020 Dec; 149():104509. PubMed ID: 32956793
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bacillus methylotrophicus DCS1: Production of Different Lipopeptide Families, In Vitro Antifungal Activity and Suppression of Fusarium Wilt in Tomato Plants.
    Jemil N; Besbes I; Gharbi Y; Triki MA; Cheffi M; Manresa A; Nasri M; Hmidet N
    Curr Microbiol; 2024 Apr; 81(6):142. PubMed ID: 38625396
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Clarification of the Antagonistic Effect of the Lipopeptides Produced by Bacillus amyloliquefaciens BPD1 against Pyricularia oryzae via In Situ MALDI-TOF IMS Analysis.
    Liao JH; Chen PY; Yang YL; Kan SC; Hsieh FC; Liu YC
    Molecules; 2016 Dec; 21(12):. PubMed ID: 27918491
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of media and fermentation conditions on surfactin and iturin homologues produced by Bacillus natto NT-6: LC-MS analysis.
    Sun D; Liao J; Sun L; Wang Y; Liu Y; Deng Q; Zhang N; Xu D; Fang Z; Wang W; Gooneratne R
    AMB Express; 2019 Jul; 9(1):120. PubMed ID: 31352542
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    Perez KJ; Viana JD; Lopes FC; Pereira JQ; Dos Santos DM; Oliveira JS; Velho RV; Crispim SM; Nicoli JR; Brandelli A; Nardi RM
    Front Microbiol; 2017; 8():61. PubMed ID: 28197131
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.