These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 33002378)

  • 1. Supraspinal fatigue in human inspiratory muscles with repeated sustained maximal efforts.
    Luu BL; Saboisky JP; Taylor JL; Gorman RB; Gandevia SC; Butler JE
    J Appl Physiol (1985); 2020 Dec; 129(6):1365-1372. PubMed ID: 33002378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of voluntary activation of fresh and fatigued human muscles using transcranial magnetic stimulation.
    Todd G; Taylor JL; Gandevia SC
    J Physiol; 2003 Sep; 551(Pt 2):661-71. PubMed ID: 12909682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supraspinal fatigue does not explain the sex difference in muscle fatigue of maximal contractions.
    Hunter SK; Butler JE; Todd G; Gandevia SC; Taylor JL
    J Appl Physiol (1985); 2006 Oct; 101(4):1036-44. PubMed ID: 16728525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of sustained low-intensity contractions on supraspinal fatigue in human elbow flexor muscles.
    Søgaard K; Gandevia SC; Todd G; Petersen NT; Taylor JL
    J Physiol; 2006 Jun; 573(Pt 2):511-23. PubMed ID: 16556656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TMS-evoked silent periods in scalene and parasternal intercostal muscles during voluntary breathing.
    Luu BL; Saboisky JP; Taylor JL; Gandevia SC; Butler JE
    Respir Physiol Neurobiol; 2015 Sep; 216():15-22. PubMed ID: 26025647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced serotonin availability amplifies fatigue perception and modulates the TMS-induced silent period during sustained low-intensity elbow flexions.
    Thorstensen JR; Taylor JL; Tucker MG; Kavanagh JJ
    J Physiol; 2020 Jul; 598(13):2685-2701. PubMed ID: 32243582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Central and peripheral fatigue of human diaphragm and limb muscles assessed by twitch interpolation.
    McKenzie DK; Bigland-Ritchie B; Gorman RB; Gandevia SC
    J Physiol; 1992 Aug; 454():643-56. PubMed ID: 1335508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of motor cortex stimulation to measure simultaneously the changes in dynamic muscle properties and voluntary activation in human muscles.
    Todd G; Taylor JL; Butler JE; Martin PG; Gorman RB; Gandevia SC
    J Appl Physiol (1985); 2007 May; 102(5):1756-66. PubMed ID: 17218428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery from supraspinal fatigue is slowed in old adults after fatiguing maximal isometric contractions.
    Hunter SK; Todd G; Butler JE; Gandevia SC; Taylor JL
    J Appl Physiol (1985); 2008 Oct; 105(4):1199-209. PubMed ID: 18687979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of human respiratory muscles during different voluntary manoeuvres.
    Gandevia SC; McKenzie DK; Plassman BL
    J Physiol; 1990 Sep; 428():387-403. PubMed ID: 2231418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supraspinal factors in human muscle fatigue: evidence for suboptimal output from the motor cortex.
    Gandevia SC; Allen GM; Butler JE; Taylor JL
    J Physiol; 1996 Jan; 490 ( Pt 2)(Pt 2):529-36. PubMed ID: 8821149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for a supraspinal contribution to human muscle fatigue.
    Taylor JL; Todd G; Gandevia SC
    Clin Exp Pharmacol Physiol; 2006 Apr; 33(4):400-5. PubMed ID: 16620309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anal sphincter fatigue: is the mechanism peripheral or central?
    Schabrun SM; Stafford RE; Hodges PW
    Neurourol Urodyn; 2011 Nov; 30(8):1550-6. PubMed ID: 21780170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supraspinal fatigue impedes recovery from a low-intensity sustained contraction in old adults.
    Yoon T; Schlinder-Delap B; Keller ML; Hunter SK
    J Appl Physiol (1985); 2012 Mar; 112(5):849-58. PubMed ID: 22174405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of voluntary activation of the back muscles using transcranial magnetic stimulation.
    Lagan J; Lang P; Strutton PH
    Clin Neurophysiol; 2008 Dec; 119(12):2839-45. PubMed ID: 18976953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of graded hypoxia on supraspinal contributions to fatigue with unilateral knee-extensor contractions.
    Goodall S; Ross EZ; Romer LM
    J Appl Physiol (1985); 2010 Dec; 109(6):1842-51. PubMed ID: 20813979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of transcranial magnetic stimulation to assess relaxation rates in unfatigued and fatigued knee-extensor muscles.
    Vernillo G; Khassetarash A; Millet GY; Temesi J
    Exp Brain Res; 2021 Jan; 239(1):205-216. PubMed ID: 33140192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sustained contraction at very low forces produces prominent supraspinal fatigue in human elbow flexor muscles.
    Smith JL; Martin PG; Gandevia SC; Taylor JL
    J Appl Physiol (1985); 2007 Aug; 103(2):560-8. PubMed ID: 17463302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maximal Voluntary Activation of the Elbow Flexors Is under Predicted by Transcranial Magnetic Stimulation Compared to Motor Point Stimulation Prior to and Following Muscle Fatigue.
    Cadigan EWJ; Collins BW; Philpott DTG; Kippenhuck G; Brenton M; Button DC
    Front Physiol; 2017; 8():707. PubMed ID: 28979211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcranial magnetic stimulation and human muscle fatigue.
    Taylor JL; Gandevia SC
    Muscle Nerve; 2001 Jan; 24(1):18-29. PubMed ID: 11150962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.