These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 33002528)

  • 1. Modeling a cancerous tumor development in a virtual patient suffering from a depressed state of mind: Simulation of somatic evolution with a customized genetic algorithm.
    Lahoz-Beltra R; Rodriguez RJ
    Biosystems; 2020 Dec; 198():104261. PubMed ID: 33002528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling somatic evolution in tumorigenesis.
    Spencer SL; Gerety RA; Pienta KJ; Forrest S
    PLoS Comput Biol; 2006 Aug; 2(8):e108. PubMed ID: 16933983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Somatic clonal evolution: A selection-centric perspective.
    Scott J; Marusyk A
    Biochim Biophys Acta Rev Cancer; 2017 Apr; 1867(2):139-150. PubMed ID: 28161395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutations, evolution and the central role of a self-defined fitness function in the initiation and progression of cancer.
    Gatenby RA; Brown J
    Biochim Biophys Acta Rev Cancer; 2017 Apr; 1867(2):162-166. PubMed ID: 28341421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clonal evolution models of tumor heterogeneity.
    Shlush LI; Hershkovitz D
    Am Soc Clin Oncol Educ Book; 2015; ():e662-5. PubMed ID: 25993239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stochastic modeling indicates that aging and somatic evolution in the hematopoetic system are driven by non-cell-autonomous processes.
    Rozhok AI; Salstrom JL; DeGregori J
    Aging (Albany NY); 2014 Dec; 6(12):1033-48. PubMed ID: 25564763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changing mutational and adaptive landscapes and the genesis of cancer.
    Liggett LA; DeGregori J
    Biochim Biophys Acta Rev Cancer; 2017 Apr; 1867(2):84-94. PubMed ID: 28167050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic transitions in a model of the hypothalamic-pituitary-adrenal axis.
    Čupić Ž; Marković VM; Maćešić S; Stanojević A; Damjanović S; Vukojević V; Kolar-Anić L
    Chaos; 2016 Mar; 26(3):033111. PubMed ID: 27036189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuroinflammation and depressive disorder: The role of the hypothalamus.
    Cernackova A; Durackova Z; Trebaticka J; Mravec B
    J Clin Neurosci; 2020 May; 75():5-10. PubMed ID: 32217047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in the hypothalamo-pituitary-adrenal axis of genetically obese fa/fa rats: a structural, immunocytochemical, and morphometrical study.
    Bestetti GE; Abramo F; Guillaume-Gentil C; Rohner-Jeanrenaud F; Jeanrenaud B; Rossi GL
    Endocrinology; 1990 Apr; 126(4):1880-7. PubMed ID: 2318148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constraints in cancer evolution.
    Venkatesan S; Birkbak NJ; Swanton C
    Biochem Soc Trans; 2017 Feb; 45(1):1-13. PubMed ID: 28202655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictive genomics: a cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data.
    Wang E; Zaman N; Mcgee S; Milanese JS; Masoudi-Nejad A; O'Connor-McCourt M
    Semin Cancer Biol; 2015 Feb; 30():4-12. PubMed ID: 24747696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insulin and obesity transform hypothalamic-pituitary-adrenal axis stemness and function in a hyperactive state.
    Werdermann M; Berger I; Scriba LD; Santambrogio A; Schlinkert P; Brendel H; Morawietz H; Schedl A; Peitzsch M; King AJF; Andoniadou CL; Bornstein SR; Steenblock C
    Mol Metab; 2021 Jan; 43():101112. PubMed ID: 33157254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic instability en route to and from cancer stem cells.
    Li L; Borodyansky L; Yang Y
    Cell Cycle; 2009 Apr; 8(7):1000-2. PubMed ID: 19270518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Harnessing Tumor Evolution to Circumvent Resistance.
    Pogrebniak KL; Curtis C
    Trends Genet; 2018 Aug; 34(8):639-651. PubMed ID: 29903534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative interpretation of a genetic model of carcinogenesis using computer simulations.
    Dai D; Beck B; Wang X; Howk C; Li Y
    PLoS One; 2011 Mar; 6(3):e16859. PubMed ID: 21408146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient simulation under a population genetics model of carcinogenesis.
    Zhu T; Hu Y; Ma ZM; Zhang DX; Li T; Yang Z
    Bioinformatics; 2011 Mar; 27(6):837-43. PubMed ID: 21247938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Network modelling reveals the mechanism underlying colitis-associated colon cancer and identifies novel combinatorial anti-cancer targets.
    Lu J; Zeng H; Liang Z; Chen L; Zhang L; Zhang H; Liu H; Jiang H; Shen B; Huang M; Geng M; Spiegel S; Luo C
    Sci Rep; 2015 Oct; 5():14739. PubMed ID: 26446703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epistemology of the origin of cancer: a new paradigm.
    Brücher BL; Jamall IS
    BMC Cancer; 2014 May; 14():331. PubMed ID: 24885752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring Clonal Evolution in Cancer with Genomics.
    Williams MJ; Sottoriva A; Graham TA
    Annu Rev Genomics Hum Genet; 2019 Aug; 20():309-329. PubMed ID: 31059289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.