These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

508 related articles for article (PubMed ID: 33002736)

  • 21. Metallo-β-Lactamase Inhibitors Inspired on Snapshots from the Catalytic Mechanism.
    Palacios AR; Rossi MA; Mahler GS; Vila AJ
    Biomolecules; 2020 Jun; 10(6):. PubMed ID: 32503337
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ten Years with New Delhi Metallo-β-lactamase-1 (NDM-1): From Structural Insights to Inhibitor Design.
    Linciano P; Cendron L; Gianquinto E; Spyrakis F; Tondi D
    ACS Infect Dis; 2019 Jan; 5(1):9-34. PubMed ID: 30421910
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Antibacterial and β-Lactamase Inhibitory Activity of Monocyclic β-Lactams.
    Decuyper L; Jukič M; Sosič I; Žula A; D'hooghe M; Gobec S
    Med Res Rev; 2018 Mar; 38(2):426-503. PubMed ID: 28815732
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Designing Inhibitors of β-Lactamase Enzymes to Overcome Carbapenem Resistance in Gram-Negative Bacteria.
    Davies DT; Everett M
    Acc Chem Res; 2021 May; 54(9):2055-2064. PubMed ID: 33788541
    [TBL] [Abstract][Full Text] [Related]  

  • 25. N-(Sulfamoylbenzoyl)-L-proline Derivatives as Potential Non-β-lactam ESBL Inhibitors: Structure-Based Lead Identification, Medicinal Chemistry and Synergistic Antibacterial Activities.
    Liu X; Dong S; Ma Y; Xu H; Zhao H; Gao Q
    Med Chem; 2019; 15(2):196-206. PubMed ID: 30112996
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Energetic, structural, and antimicrobial analyses of beta-lactam side chain recognition by beta-lactamases.
    Caselli E; Powers RA; Blasczcak LC; Wu CY; Prati F; Shoichet BK
    Chem Biol; 2001 Jan; 8(1):17-31. PubMed ID: 11182316
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Type I beta-lactamases of gram-negative bacteria: interactions with beta-lactam antibiotics.
    Sanders CC; Sanders WE
    J Infect Dis; 1986 Nov; 154(5):792-800. PubMed ID: 3490520
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel beta-lactam antibiotics and inhibitor combinations.
    Bassetti M; Righi E; Viscoli C
    Expert Opin Investig Drugs; 2008 Mar; 17(3):285-96. PubMed ID: 18321228
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chemical sensors for the early diagnosis of bacterial resistance to β-lactam antibiotics.
    Canabal R; González-Bello C
    Bioorg Chem; 2024 Sep; 150():107528. PubMed ID: 38852309
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Antimicrobial metallopolymers and their bioconjugates with conventional antibiotics against multidrug-resistant bacteria.
    Zhang J; Chen YP; Miller KP; Ganewatta MS; Bam M; Yan Y; Nagarkatti M; Decho AW; Tang C
    J Am Chem Soc; 2014 Apr; 136(13):4873-6. PubMed ID: 24628053
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antimicrobial resistance with focus on beta-lactam resistance in gram-negative bacilli.
    Pitout JD; Sanders CC; Sanders WE
    Am J Med; 1997 Jul; 103(1):51-9. PubMed ID: 9236486
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The development of beta-lactam antibiotics in response to the evolution of beta-lactamases.
    Essack SY
    Pharm Res; 2001 Oct; 18(10):1391-9. PubMed ID: 11697463
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent advances in the development of β-lactamase inhibitors.
    Jalde SS; Choi HK
    J Microbiol; 2020 Aug; 58(8):633-647. PubMed ID: 32720096
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular basis of antibiotic resistance and beta-lactamase inhibition by mechanism-based inactivators: perspectives and future directions.
    Therrien C; Levesque RC
    FEMS Microbiol Rev; 2000 Jul; 24(3):251-62. PubMed ID: 10841972
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New promising β-lactamase inhibitors for clinical use.
    Olsen I
    Eur J Clin Microbiol Infect Dis; 2015 Jul; 34(7):1303-8. PubMed ID: 25864193
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metallo-β-lactamase-mediated antimicrobial resistance and progress in inhibitor discovery.
    Yang Y; Yan YH; Schofield CJ; McNally A; Zong Z; Li GB
    Trends Microbiol; 2023 Jul; 31(7):735-748. PubMed ID: 36858862
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cyclobutanone Analogues of β-Lactam Antibiotics: β-Lactamase Inhibitors with Untapped Potential?
    Devi P; Rutledge PJ
    Chembiochem; 2017 Feb; 18(4):338-351. PubMed ID: 27992105
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The road to avibactam: the first clinically useful non-β-lactam working somewhat like a β-lactam.
    Wang DY; Abboud MI; Markoulides MS; Brem J; Schofield CJ
    Future Med Chem; 2016 Jun; 8(10):1063-84. PubMed ID: 27327972
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The enzymes of β-lactam biosynthesis.
    Hamed RB; Gomez-Castellanos JR; Henry L; Ducho C; McDonough MA; Schofield CJ
    Nat Prod Rep; 2013 Jan; 30(1):21-107. PubMed ID: 23135477
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Beta-lactamase inhibitors: the story so far.
    Pérez-Llarena FJ; Bou G
    Curr Med Chem; 2009; 16(28):3740-65. PubMed ID: 19747143
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.