These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 33002886)

  • 1. Review of semi-dry electrodes for EEG recording.
    Li GL; Wu JT; Xia YH; He QG; Jin HG
    J Neural Eng; 2020 Oct; 17(5):051004. PubMed ID: 33002886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards emerging EEG applications: a novel printable flexible Ag/AgCl dry electrode array for robust recording of EEG signals at forehead sites.
    Li G; Wu J; Xia Y; Wu Y; Tian Y; Liu J; Chen D; He Q
    J Neural Eng; 2020 Mar; 17(2):026001. PubMed ID: 32000145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards real-life EEG applications: novel superporous hydrogel-based semi-dry EEG electrodes enabling automatically 'charge-discharge' electrolyte.
    Li G; Wang S; Li M; Duan YY
    J Neural Eng; 2021 Mar; 18(4):. PubMed ID: 33721854
    [No Abstract]   [Full Text] [Related]  

  • 4. Design, fabrication and experimental validation of a novel dry-contact sensor for measuring electroencephalography signals without skin preparation.
    Liao LD; Wang IJ; Chen SF; Chang JY; Lin CT
    Sensors (Basel); 2011; 11(6):5819-34. PubMed ID: 22163929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of foam-based and spring-loaded dry EEG electrodes with wet electrodes in resting and moving conditions.
    Yeung A; Garudadri H; Van Toen C; Mercier P; Balkan O; Makeig S; Virji-Babul N
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():7131-4. PubMed ID: 26737936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Dry Revolution: Evaluation of Three Different EEG Dry Electrode Types in Terms of Signal Spectral Features, Mental States Classification and Usability.
    Di Flumeri G; Aricò P; Borghini G; Sciaraffa N; Di Florio A; Babiloni F
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30893791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyvinyl alcohol/polyacrylamide double-network hydrogel-based semi-dry electrodes for robust electroencephalography recording at hairy scalp for noninvasive brain-computer interfaces.
    Li G; Liu Y; Chen Y; Li M; Song J; Li K; Zhang Y; Hu L; Qi X; Wan X; Liu J; He Q; Zhou H
    J Neural Eng; 2023 Mar; 20(2):. PubMed ID: 36863014
    [No Abstract]   [Full Text] [Related]  

  • 8. 3D Printed Dry EEG Electrodes.
    Krachunov S; Casson AJ
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27706094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Feature, Performance, and Prospect of Advanced Electrodes for Electroencephalogram.
    Liu Q; Yang L; Zhang Z; Yang H; Zhang Y; Wu J
    Biosensors (Basel); 2023 Jan; 13(1):. PubMed ID: 36671936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic comparison between a wireless EEG system with dry electrodes and a wired EEG system with wet electrodes.
    Kam JWY; Griffin S; Shen A; Patel S; Hinrichs H; Heinze HJ; Deouell LY; Knight RT
    Neuroimage; 2019 Jan; 184():119-129. PubMed ID: 30218769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel dry polymer foam electrodes for long-term EEG measurement.
    Lin CT; Liao LD; Liu YH; Wang IJ; Lin BS; Chang JY
    IEEE Trans Biomed Eng; 2011 May; 58(5):1200-7. PubMed ID: 21193371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of a Low-Cost EEG Monitoring System and Dry Electrodes toward Clinical Use in the Neonatal ICU.
    O'Sullivan M; Temko A; Bocchino A; O'Mahony C; Boylan G; Popovici E
    Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31212613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A dry electrode for EEG recording.
    Taheri BA; Knight RT; Smith RL
    Electroencephalogr Clin Neurophysiol; 1994 May; 90(5):376-83. PubMed ID: 7514984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel semi-dry electrodes for brain-computer interface applications.
    Wang F; Li G; Chen J; Duan Y; Zhang D
    J Neural Eng; 2016 Aug; 13(4):046021. PubMed ID: 27378253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible Dry Electrode Based on a Wrinkled Surface That Uses Carbon Nanotube/Polymer Composites for Recording Electroencephalograms.
    Oh J; Nam KW; Kim WJ; Kang BH; Park SH
    Materials (Basel); 2024 Jan; 17(3):. PubMed ID: 38591516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Bristle-Shaped Semi-Dry Electrode With Low Contact Impedance and Ease of Use Features for EEG Signal Measurements.
    Gao KP; Yang HJ; Liao LL; Jiang CP; Zhao N; Wang XL; Li XY; Chen X; Yang B; Liu J
    IEEE Trans Biomed Eng; 2020 Mar; 67(3):750-761. PubMed ID: 31170063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel Multipin Electrode Cap System for Dry Electroencephalography.
    Fiedler P; Pedrosa P; Griebel S; Fonseca C; Vaz F; Supriyanto E; Zanow F; Haueisen J
    Brain Topogr; 2015 Sep; 28(5):647-656. PubMed ID: 25998854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing a novel polymer-wick based electrode for EEG neurophysiological research.
    Pasion R; Paiva TO; Pedrosa P; Gaspar H; Vasconcelos B; Martins AC; Amaral MH; Nóbrega JM; Páscoa R; Fonseca C; Barbosa F
    J Neurosci Methods; 2016 Jul; 267():126-31. PubMed ID: 27091368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single trial classification of motor imagination using 6 dry EEG electrodes.
    Popescu F; Fazli S; Badower Y; Blankertz B; Müller KR
    PLoS One; 2007 Jul; 2(7):e637. PubMed ID: 17653264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.