These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 33003202)

  • 41. Goals and approaches for each processing step for single-cell RNA sequencing data.
    Zhang Z; Cui F; Wang C; Zhao L; Zou Q
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33316046
    [TBL] [Abstract][Full Text] [Related]  

  • 42. DAE-TPGM: A deep autoencoder network based on a two-part-gamma model for analyzing single-cell RNA-seq data.
    Zhao S; Zhang L; Liu X
    Comput Biol Med; 2022 Jul; 146():105578. PubMed ID: 35569337
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Combining denoising of RNA-seq data and flux balance analysis for cluster analysis of single cells.
    Galuzzi BG; Vanoni M; Damiani C
    BMC Bioinformatics; 2022 Oct; 23(Suppl 6):445. PubMed ID: 36284276
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Are dropout imputation methods for scRNA-seq effective for scHi-C data?
    Han C; Xie Q; Lin S
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33201180
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparison of Computational Methods for Imputing Single-Cell RNA-Sequencing Data.
    Zhang L; Zhang S
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(2):376-389. PubMed ID: 29994128
    [TBL] [Abstract][Full Text] [Related]  

  • 46. scTSSR2: Imputing Dropout Events for Single-Cell RNA Sequencing Using Fast Two-Side Self-Representation.
    Li B; Jin K; Ou-Yang L; Yan H; Zhang XF
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):1445-1456. PubMed ID: 35476574
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High-throughput single-cell RNA-seq data imputation and characterization with surrogate-assisted automated deep learning.
    Li X; Li S; Huang L; Zhang S; Wong KC
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34553763
    [TBL] [Abstract][Full Text] [Related]  

  • 48. scDoc: correcting drop-out events in single-cell RNA-seq data.
    Ran D; Zhang S; Lytal N; An L
    Bioinformatics; 2020 Aug; 36(15):4233-4239. PubMed ID: 32365169
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Correlation Imputation for Single-Cell RNA-seq.
    Gan L; Vinci G; Allen GI
    J Comput Biol; 2022 May; 29(5):465-482. PubMed ID: 35325552
    [No Abstract]   [Full Text] [Related]  

  • 50. A universal deep neural network for in-depth cleaning of single-cell RNA-Seq data.
    Li H; Brouwer CR; Luo W
    Nat Commun; 2022 Apr; 13(1):1901. PubMed ID: 35393428
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evaluating imputation methods for single-cell RNA-seq data.
    Cheng Y; Ma X; Yuan L; Sun Z; Wang P
    BMC Bioinformatics; 2023 Jul; 24(1):302. PubMed ID: 37507764
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Model-based autoencoders for imputing discrete single-cell RNA-seq data.
    Tian T; Min MR; Wei Z
    Methods; 2021 Aug; 192():112-119. PubMed ID: 32971193
    [TBL] [Abstract][Full Text] [Related]  

  • 53. bayNorm: Bayesian gene expression recovery, imputation and normalization for single-cell RNA-sequencing data.
    Tang W; Bertaux F; Thomas P; Stefanelli C; Saint M; Marguerat S; Shahrezaei V
    Bioinformatics; 2020 Feb; 36(4):1174-1181. PubMed ID: 31584606
    [TBL] [Abstract][Full Text] [Related]  

  • 54. scTSSR: gene expression recovery for single-cell RNA sequencing using two-side sparse self-representation.
    Jin K; Ou-Yang L; Zhao XM; Yan H; Zhang XF
    Bioinformatics; 2020 May; 36(10):3131-3138. PubMed ID: 32073600
    [TBL] [Abstract][Full Text] [Related]  

  • 55. JOINT for large-scale single-cell RNA-sequencing analysis via soft-clustering and parallel computing.
    Cui T; Wang T
    BMC Genomics; 2021 Jan; 22(1):47. PubMed ID: 33430769
    [TBL] [Abstract][Full Text] [Related]  

  • 56. WEDGE: imputation of gene expression values from single-cell RNA-seq datasets using biased matrix decomposition.
    Hu Y; Li B; Zhang W; Liu N; Cai P; Chen F; Qu K
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33834202
    [TBL] [Abstract][Full Text] [Related]  

  • 57. PRIME: a probabilistic imputation method to reduce dropout effects in single-cell RNA sequencing.
    Jeong H; Liu Z
    Bioinformatics; 2020 Jul; 36(13):4021-4029. PubMed ID: 32348450
    [TBL] [Abstract][Full Text] [Related]  

  • 58. CellBench: R/Bioconductor software for comparing single-cell RNA-seq analysis methods.
    Su S; Tian L; Dong X; Hickey PF; Freytag S; Ritchie ME
    Bioinformatics; 2020 Apr; 36(7):2288-2290. PubMed ID: 31778143
    [TBL] [Abstract][Full Text] [Related]  

  • 59. ZIAQ: a quantile regression method for differential expression analysis of single-cell RNA-seq data.
    Zhang W; Wei Y; Zhang D; Xu EY
    Bioinformatics; 2020 May; 36(10):3124-3130. PubMed ID: 32053182
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Improvements Achieved by Multiple Imputation for Single-Cell RNA-Seq Data in Clustering Analysis and Differential Expression Analysis.
    Zhu M; Lai Y
    J Comput Biol; 2022 Jul; 29(7):634-649. PubMed ID: 35575729
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.