These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 33003202)

  • 81. Accurate Single-Cell Clustering through Ensemble Similarity Learning.
    Jeong H; Shin S; Yeom HG
    Genes (Basel); 2021 Oct; 12(11):. PubMed ID: 34828276
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Inverse weighting method with jackknife variance estimator for differential expression analysis of single-cell RNA sequencing data.
    Zhou L; Pan Q
    Comput Biol Chem; 2022 Oct; 100():107733. PubMed ID: 35926443
    [TBL] [Abstract][Full Text] [Related]  

  • 83. SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data.
    Peng T; Zhu Q; Yin P; Tan K
    Genome Biol; 2019 May; 20(1):88. PubMed ID: 31060596
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Deconvolution of autoencoders to learn biological regulatory modules from single cell mRNA sequencing data.
    Kinalis S; Nielsen FC; Winther O; Bagger FO
    BMC Bioinformatics; 2019 Jul; 20(1):379. PubMed ID: 31286861
    [TBL] [Abstract][Full Text] [Related]  

  • 85. CBLRR: a cauchy-based bounded constraint low-rank representation method to cluster single-cell RNA-seq data.
    Ding Q; Yang W; Luo M; Xu C; Xu Z; Pang F; Cai Y; Anashkina AA; Su X; Chen N; Jiang Q
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35870203
    [TBL] [Abstract][Full Text] [Related]  

  • 86. SD2: spatially resolved transcriptomics deconvolution through integration of dropout and spatial information.
    Li H; Li H; Zhou J; Gao X
    Bioinformatics; 2022 Oct; 38(21):4878-4884. PubMed ID: 36063455
    [TBL] [Abstract][Full Text] [Related]  

  • 87. AdImpute: An Imputation Method for Single-Cell RNA-Seq Data Based on Semi-Supervised Autoencoders.
    Xu L; Xu Y; Xue T; Zhang X; Li J
    Front Genet; 2021; 12():739677. PubMed ID: 34567089
    [No Abstract]   [Full Text] [Related]  

  • 88. Leveraging data-driven self-consistency for high-fidelity gene expression recovery.
    Islam MT; Wang JY; Ren H; Li X; Khuzani MB; Sang S; Yu L; Shen L; Zhao W; Xing L
    Nat Commun; 2022 Nov; 13(1):7142. PubMed ID: 36414658
    [TBL] [Abstract][Full Text] [Related]  

  • 89. FITs: forest of imputation trees for recovering true signals in single-cell open chromatin profiles.
    Sharma R; Pandey N; Mongia A; Mishra S; Majumdar A; Kumar V
    NAR Genom Bioinform; 2020 Dec; 2(4):lqaa091. PubMed ID: 33575635
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Transcriptomic Harmonization as the Way for Suppressing Cross-Platform Bias and Batch Effect.
    Borisov N; Buzdin A
    Biomedicines; 2022 Sep; 10(9):. PubMed ID: 36140419
    [TBL] [Abstract][Full Text] [Related]  

  • 91. A versatile information retrieval framework for evaluating profile strength and similarity.
    Kalinin AA; Arevalo J; Vulliard L; Serrano E; Tsang H; Bornholdt M; Rajwa B; Carpenter AE; Way GP; Singh S
    bioRxiv; 2024 Apr; ():. PubMed ID: 38617315
    [TBL] [Abstract][Full Text] [Related]  

  • 92. A spectral clustering with self-weighted multiple kernel learning method for single-cell RNA-seq data.
    Qi R; Wu J; Guo F; Xu L; Zou Q
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33003206
    [TBL] [Abstract][Full Text] [Related]  

  • 93. The mole genome reveals regulatory rearrangements associated with adaptive intersexuality.
    M Real F; Haas SA; Franchini P; Xiong P; Simakov O; Kuhl H; Schöpflin R; Heller D; Moeinzadeh MH; Heinrich V; Krannich T; Bressin A; Hartmann MF; Wudy SA; Dechmann DKN; Hurtado A; Barrionuevo FJ; Schindler M; Harabula I; Osterwalder M; Hiller M; Wittler L; Visel A; Timmermann B; Meyer A; Vingron M; Jiménez R; Mundlos S; Lupiáñez DG
    Science; 2020 Oct; 370(6513):208-214. PubMed ID: 33033216
    [TBL] [Abstract][Full Text] [Related]  

  • 94. SC2disease: a manually curated database of single-cell transcriptome for human diseases.
    Zhao T; Lyu S; Lu G; Juan L; Zeng X; Wei Z; Hao J; Peng J
    Nucleic Acids Res; 2021 Jan; 49(D1):D1413-D1419. PubMed ID: 33010177
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Zero-preserving imputation of single-cell RNA-seq data.
    Linderman GC; Zhao J; Roulis M; Bielecki P; Flavell RA; Nadler B; Kluger Y
    Nat Commun; 2022 Jan; 13(1):192. PubMed ID: 35017482
    [TBL] [Abstract][Full Text] [Related]  

  • 96. scTCA: a hybrid Transformer-CNN architecture for imputation and denoising of scDNA-seq data.
    Yu Z; Liu F; Li Y
    Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39523623
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Modal-nexus auto-encoder for multi-modality cellular data integration and imputation.
    Tang Z; Chen G; Chen S; Yao J; You L; Chen CY
    Nat Commun; 2024 Oct; 15(1):9021. PubMed ID: 39424861
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Diffusion on PCA-UMAP Manifold: The Impact of Data Structure Preservation to Denoise High-Dimensional Single-Cell RNA Sequencing Data.
    Cristian PM; Aarón VJ; Armando ED; Estrella MY; Daniel NR; David GV; Edgar M; Paul SJ; Osbaldo RA
    Biology (Basel); 2024 Jul; 13(7):. PubMed ID: 39056705
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Censored Least Squares for Imputing Missing Values in PARAFAC Tensor Factorization.
    Hung EC; Hodzic E; Tan ZC; Meyer AS
    bioRxiv; 2024 Jul; ():. PubMed ID: 39026852
    [TBL] [Abstract][Full Text] [Related]  

  • 100.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.