These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
344 related articles for article (PubMed ID: 33003206)
1. A spectral clustering with self-weighted multiple kernel learning method for single-cell RNA-seq data. Qi R; Wu J; Guo F; Xu L; Zou Q Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33003206 [TBL] [Abstract][Full Text] [Related]
2. Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis. Geddes TA; Kim T; Nan L; Burchfield JG; Yang JYH; Tao D; Yang P BMC Bioinformatics; 2019 Dec; 20(Suppl 19):660. PubMed ID: 31870278 [TBL] [Abstract][Full Text] [Related]
3. Deep enhanced constraint clustering based on contrastive learning for scRNA-seq data. Gan Y; Chen Y; Xu G; Guo W; Zou G Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37313714 [TBL] [Abstract][Full Text] [Related]
4. Impact of similarity metrics on single-cell RNA-seq data clustering. Kim T; Chen IR; Lin Y; Wang AY; Yang JYH; Yang P Brief Bioinform; 2019 Nov; 20(6):2316-2326. PubMed ID: 30137247 [TBL] [Abstract][Full Text] [Related]
5. Deep structural clustering for single-cell RNA-seq data jointly through autoencoder and graph neural network. Gan Y; Huang X; Zou G; Zhou S; Guan J Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35172334 [TBL] [Abstract][Full Text] [Related]
6. Spectral clustering of single cells using Siamese nerual network combined with improved affinity matrix. Jiang H; Huang Y; Li Q Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35419595 [TBL] [Abstract][Full Text] [Related]
7. A Personalized Low-Rank Subspace Clustering Method Based on Locality and Similarity Constraints for scRNA-seq Data Analysis. Qiao TJ; Liu JX; Shang J; Yuan S; Zheng CH; Wang J IEEE J Biomed Health Inform; 2023 May; 27(5):2575-2584. PubMed ID: 37027680 [TBL] [Abstract][Full Text] [Related]
8. scZAG: Integrating ZINB-Based Autoencoder with Adaptive Data Augmentation Graph Contrastive Learning for scRNA-seq Clustering. Zhang T; Ren J; Li L; Wu Z; Zhang Z; Dong G; Wang G Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38892162 [TBL] [Abstract][Full Text] [Related]
9. DCRELM: dual correlation reduction network-based extreme learning machine for single-cell RNA-seq data clustering. Gao Q; Ai Q Sci Rep; 2024 Jun; 14(1):13541. PubMed ID: 38866896 [TBL] [Abstract][Full Text] [Related]
10. ScGSLC: An unsupervised graph similarity learning framework for single-cell RNA-seq data clustering. Li J; Jiang W; Han H; Liu J; Liu B; Wang Y Comput Biol Chem; 2021 Feb; 90():107415. PubMed ID: 33307360 [TBL] [Abstract][Full Text] [Related]
11. Machine learning and statistical methods for clustering single-cell RNA-sequencing data. Petegrosso R; Li Z; Kuang R Brief Bioinform; 2020 Jul; 21(4):1209-1223. PubMed ID: 31243426 [TBL] [Abstract][Full Text] [Related]
12. scHFC: a hybrid fuzzy clustering method for single-cell RNA-seq data optimized by natural computation. Wang J; Xia J; Tan D; Lin R; Su Y; Zheng CH Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35136924 [TBL] [Abstract][Full Text] [Related]
13. jSRC: a flexible and accurate joint learning algorithm for clustering of single-cell RNA-sequencing data. Wu W; Liu Z; Ma X Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33535230 [TBL] [Abstract][Full Text] [Related]
14. Learning deep features and topological structure of cells for clustering of scRNA-sequencing data. Wang H; Ma X Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35302164 [TBL] [Abstract][Full Text] [Related]
15. SinNLRR: a robust subspace clustering method for cell type detection by non-negative and low-rank representation. Zheng R; Li M; Liang Z; Wu FX; Pan Y; Wang J Bioinformatics; 2019 Oct; 35(19):3642-3650. PubMed ID: 30821315 [TBL] [Abstract][Full Text] [Related]
16. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa. Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593 [TBL] [Abstract][Full Text] [Related]
17. coupleCoC+: An information-theoretic co-clustering-based transfer learning framework for the integrative analysis of single-cell genomic data. Zeng P; Lin Z PLoS Comput Biol; 2021 Jun; 17(6):e1009064. PubMed ID: 34077420 [TBL] [Abstract][Full Text] [Related]
18. Contrastive self-supervised clustering of scRNA-seq data. Ciortan M; Defrance M BMC Bioinformatics; 2021 May; 22(1):280. PubMed ID: 34044773 [TBL] [Abstract][Full Text] [Related]
19. Coupled co-clustering-based unsupervised transfer learning for the integrative analysis of single-cell genomic data. Zeng P; Wangwu J; Lin Z Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33279962 [TBL] [Abstract][Full Text] [Related]
20. Joint learning dimension reduction and clustering of single-cell RNA-sequencing data. Wu W; Ma X Bioinformatics; 2020 Jun; 36(12):3825-3832. PubMed ID: 32246821 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]