These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 33003442)

  • 1. Bovine Hemoglobin Enzymatic Hydrolysis by a New Eco-Efficient Process-Part II: Production of Bioactive Peptides.
    Abou-Diab M; Thibodeau J; Deracinois B; Flahaut C; Fliss I; Dhulster P; Bazinet L; Nedjar N
    Membranes (Basel); 2020 Sep; 10(10):. PubMed ID: 33003442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of Demineralized Antibacterial, Antifungal and Antioxidant Peptides from Bovine Hemoglobin Using an Optimized Multiple-Step System: Electrodialysis with Bipolar Membrane.
    Abou-Diab M; Thibodeau J; Fliss I; Dhulster P; Bazinet L; Nedjar N
    Membranes (Basel); 2022 May; 12(5):. PubMed ID: 35629838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bovine Hemoglobin Enzymatic Hydrolysis by a New Ecoefficient Process-Part I: Feasibility of Electrodialysis with Bipolar Membrane and Production of Neokyotorphin (α137-141).
    Abou-Diab M; Thibodeau J; Deracinois B; Flahaut C; Fliss I; Dhulster P; Nedjar N; Bazinet L
    Membranes (Basel); 2020 Sep; 10(10):. PubMed ID: 32992811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the Bioactive Properties of Human and Bovine Hemoglobin Hydrolysates Obtained by Enzymatic Hydrolysis: Antimicrobial and Antioxidant Potential of the Active Peptide α137-141.
    Outman A; Deracinois B; Flahaut C; Diab MA; Dhaouefi J; Gressier B; Eto B; Nedjar N
    Int J Mol Sci; 2023 Aug; 24(17):. PubMed ID: 37685861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential of Human Hemoglobin as a Source of Bioactive Peptides: Comparative Study of Enzymatic Hydrolysis with Bovine Hemoglobin and the Production of Active Peptide α137-141.
    Outman A; Deracinois B; Flahaut C; Diab MA; Gressier B; Eto B; Nedjar N
    Int J Mol Sci; 2023 Jul; 24(15):. PubMed ID: 37569300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Obtaining New Candidate Peptides for Biological Anticancer Drugs from Enzymatic Hydrolysis of Human and Bovine Hemoglobin.
    Outman A; Bouhrim M; Hountondji C; Noman OM; Alqahtani AS; Gressier B; Nedjar N; Eto B
    Int J Mol Sci; 2023 Oct; 24(20):. PubMed ID: 37895063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of Pulsed Electric Fields and pH on Enzyme Inactivation and Bioactivities of Peptic Hydrolysates Produced from Bovine and Porcine Hemoglobin.
    Sanchez-Reinoso Z; Todeschini S; Thibodeau J; Ben Said L; Fliss I; Bazinet L; Mikhaylin S
    Foods; 2022 Oct; 11(21):. PubMed ID: 36359927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Valorization of cruor slaughterhouse by-product by enzymatic hydrolysis for the production of antibacterial peptides: focus on α 1-32 family peptides mechanism and kinetics modeling.
    Hedhili K; Dimitrov K; Vauchel P; Sila A; Chataigné G; Dhulster P; Nedjar N
    Bioprocess Biosyst Eng; 2015 Oct; 38(10):1867-77. PubMed ID: 26099509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of an antimicrobial peptide derived from slaughterhouse by-product and its potential application on meat as preservative.
    Przybylski R; Firdaous L; Châtaigné G; Dhulster P; Nedjar N
    Food Chem; 2016 Nov; 211():306-13. PubMed ID: 27283637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How Discoloration of Porcine Cruor Hydrolysate Allowed the Identification of New Antifungal Peptides.
    Cournoyer A; Thibodeau J; Ben Said L; Sanchez-Reinoso Z; Mikhaylin S; Fliss I; Bazinet L
    Foods; 2022 Dec; 11(24):. PubMed ID: 36553781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled Enzymatic Hydrolysis: A New Strategy for the Discovery of Antimicrobial Peptides.
    Adje EY; Balti R; Lecouturier D; Kouach M; Dhulster P; Guillochon D; Nedjar-Arroume N
    Probiotics Antimicrob Proteins; 2013 Sep; 5(3):176-86. PubMed ID: 26782986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of an electrodialytic reactor for the simultaneous β-lactoglobulin enzymatic hydrolysis and fractionation of generated bioactive peptides.
    Doyen A; Husson E; Bazinet L
    Food Chem; 2013 Feb; 136(3-4):1193-202. PubMed ID: 23194514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anti-Inflammatory and Antioxidant Properties of Peptides Released from β-Lactoglobulin by High Hydrostatic Pressure-Assisted Enzymatic Hydrolysis.
    Bamdad F; Bark S; Kwon CH; Suh JW; Sunwoo H
    Molecules; 2017 Jun; 22(6):. PubMed ID: 28590420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing bioactive peptide release and identification using targeted enzymatic hydrolysis of milk proteins.
    Nongonierma AB; FitzGerald RJ
    Anal Bioanal Chem; 2018 Jun; 410(15):3407-3423. PubMed ID: 29260283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of Antimicrobial Peptides of Native and Heated Hydrolysates from Hen Egg White Lysozyme.
    Carrillo W; Ramos M
    J Med Food; 2018 Sep; 21(9):915-926. PubMed ID: 29688795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled enzymatic hydrolysis of pollen protein as promising tool for production of potential bioactive peptides.
    Maqsoudlou A; Sadeghi Mahoonak A; Mora L; Mohebodini H; Ghorbani M; Toldrá F
    J Food Biochem; 2019 May; 43(5):e12819. PubMed ID: 31353532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards generation of bioactive peptides from meat industry waste proteins: Generation of peptides using commercial microbial proteases.
    Ryder K; Bekhit Ael-D; McConnell M; Carne A
    Food Chem; 2016 Oct; 208():42-50. PubMed ID: 27132822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrafiltration Fractionation of Bovine Hemoglobin Hydrolysates: Prediction of Separation Performances for Optimal Enrichment in Antimicrobial Peptide.
    Beaubier S; Przybylski R; Bodin A; Nedjar N; Dhulster P; Kapel R
    Membranes (Basel); 2021 Jan; 11(2):. PubMed ID: 33498372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous hydrolysis of modified wheat gluten in an enzymatic membrane reactor.
    Cui J; Kong X; Hua Y; Zhou H; Liu Q
    J Sci Food Agric; 2011 Dec; 91(15):2799-805. PubMed ID: 21744356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional Properties of Casein and Caseinate Produced by Electrodialysis with Bipolar Membrane Coupled to an Ultrafiltration Module.
    Deschênes Gagnon R; Bazinet L; Mikhaylin S
    Membranes (Basel); 2022 Feb; 12(3):. PubMed ID: 35323745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.