These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 33003558)

  • 41. Tantalizing evidence for caspase-like protein expression and activity in the cellular stress response of Archaea.
    Bidle KA; Haramaty L; Baggett N; Nannen J; Bidle KD
    Environ Microbiol; 2010 May; 12(5):1161-72. PubMed ID: 20132282
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Growth study under combined effects of temperature, pH and salinity and transcriptome analysis revealed adaptations of Aspergillus terreus NTOU4989 to the extreme conditions at Kueishan Island Hydrothermal Vent Field, Taiwan.
    Pang KL; Chiang MW; Guo SY; Shih CY; Dahms HU; Hwang JS; Cha HJ
    PLoS One; 2020; 15(5):e0233621. PubMed ID: 32453769
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Unique Physiological and Transcriptional Shifts under Combinations of Salinity, Drought, and Heat.
    Shaar-Moshe L; Blumwald E; Peleg Z
    Plant Physiol; 2017 May; 174(1):421-434. PubMed ID: 28314795
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular, Structural, and Functional Diversity of Universal Stress Proteins (USPs) in Bacteria, Plants, and Their Biotechnological Applications.
    Nabi B; Kumawat M; Ahlawat N; Ahlawat S
    Protein J; 2024 Jun; 43(3):437-446. PubMed ID: 38492187
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Life under multiple extreme conditions: diversity and physiology of the halophilic alkalithermophiles.
    Mesbah NM; Wiegel J
    Appl Environ Microbiol; 2012 Jun; 78(12):4074-82. PubMed ID: 22492435
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mild heat induces a distinct "eustress" response in Chinese Hamster Ovary cells but does not induce heat shock protein synthesis.
    Peksel B; Gombos I; Péter M; Vigh L; Tiszlavicz Á; Brameshuber M; Balogh G; Schütz GJ; Horváth I; Vigh L; Török Z
    Sci Rep; 2017 Nov; 7(1):15643. PubMed ID: 29142280
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Global effect of the lack of inorganic polyphosphate in the extremophilic archaeon Sulfolobus solfataricus: A proteomic approach.
    Soto DF; Recalde A; Orell A; Albers SV; Paradela A; Navarro CA; Jerez CA
    J Proteomics; 2019 Jan; 191():143-152. PubMed ID: 29501848
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Physiological adaptations of stressed fish to polluted environments: role of heat shock proteins.
    Padmini E
    Rev Environ Contam Toxicol; 2010; 206():1-27. PubMed ID: 20652666
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Diversity in transcripts and translational pattern of stress proteins in marine extremophiles.
    Ambily Nath IV; Loka Bharathi PA
    Extremophiles; 2011 Mar; 15(2):129-53. PubMed ID: 21210167
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Transcriptomic response to heat stress among ecologically divergent populations of redband trout.
    Narum SR; Campbell NR
    BMC Genomics; 2015 Feb; 16(1):103. PubMed ID: 25765850
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Heat shock proteins (chaperones) in fish and shellfish and their potential role in relation to fish health: a review.
    Roberts RJ; Agius C; Saliba C; Bossier P; Sung YY
    J Fish Dis; 2010 Oct; 33(10):789-801. PubMed ID: 20678104
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Role of heat shock proteins in the exercise response.
    Fehrenbach E; Niess AM
    Exerc Immunol Rev; 1999; 5():57-77. PubMed ID: 10519062
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The ShBle resistance determinant from Streptoalloteichus hindustanus is expressed in Haloferax volcanii and confers resistance to bleomycin.
    Nuttall SD; Deutschel SE; Irving RA; Serrano-Gomicia JA; Dyall-Smith ML
    Biochem J; 2000 Mar; 346 Pt 2(Pt 2):251-4. PubMed ID: 10677341
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sucrose Metabolism in Haloarchaea: Reassessment Using Genomics, Proteomics, and Metagenomics.
    Williams TJ; Allen MA; Liao Y; Raftery MJ; Cavicchioli R
    Appl Environ Microbiol; 2019 Mar; 85(6):. PubMed ID: 30658981
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evolutionary divergence and salinity-mediated selection in halophilic archaea.
    Dennis PP; Shimmin LC
    Microbiol Mol Biol Rev; 1997 Mar; 61(1):90-104. PubMed ID: 9106366
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Facing extremes: archaeal surface-layer (glyco)proteins.
    Eichler J
    Microbiology (Reading); 2003 Dec; 149(Pt 12):3347-3351. PubMed ID: 14663068
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Haloarchaea: A Promising Biosource for Carotenoid Production.
    Rodrigo-Baños M; Montero Z; Torregrosa-Crespo J; Garbayo I; Vílchez C; Martínez-Espinosa RM
    Adv Exp Med Biol; 2021; 1261():165-174. PubMed ID: 33783738
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Isolation of haloarchaea that grow at low salinities.
    Purdy KJ; Cresswell-Maynard TD; Nedwell DB; McGenity TJ; Grant WD; Timmis KN; Embley TM
    Environ Microbiol; 2004 Jun; 6(6):591-5. PubMed ID: 15142247
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mitochondrial Adaptations to Variable Environments and Their Role in Animals' Stress Tolerance.
    Sokolova I
    Integr Comp Biol; 2018 Sep; 58(3):519-531. PubMed ID: 29701785
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Induction of a Toxin-Antitoxin Gene Cassette under High Hydrostatic Pressure Enables Markerless Gene Disruption in the Hyperthermophilic Archaeon
    Song Q; Li Z; Chen R; Ma X; Xiao X; Xu J
    Appl Environ Microbiol; 2019 Feb; 85(4):. PubMed ID: 30504216
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.