These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 33003716)

  • 1. Thermoelectric properties of a double-dot system in serial configuration within the Coulomb blockade regime.
    Zimbovskaya NA
    J Chem Phys; 2020 Sep; 153(12):124712. PubMed ID: 33003716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge and heat current rectification by a double-dot system within the Coulomb blockade regime.
    Zimbovskaya NA
    J Phys Condens Matter; 2020 May; 32(32):. PubMed ID: 32217812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large enhancement of thermoelectric effects in multiple quantum dots in a serial configuration due to Coulomb interactions.
    Zimbovskaya NA
    J Phys Condens Matter; 2022 Apr; 34(25):. PubMed ID: 35378523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-equilibrium thermoelectric transport across normal metal-quantum dot-superconductor hybrid system within the Coulomb blockade regime.
    Verma S; Singh A
    J Phys Condens Matter; 2022 Feb; 34(15):. PubMed ID: 35045407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of interdot hopping and Coulomb blockade on the thermoelectric properties of serially coupled quantum dots.
    T Kuo DM; Chang YC
    Nanoscale Res Lett; 2012 May; 7(1):257. PubMed ID: 22591807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermoelectric properties of a quantum dot array connected to metallic electrodes.
    Kuo DM; Chang YC
    Nanotechnology; 2013 May; 24(17):175403. PubMed ID: 23558456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of Coulomb interactions on thermoelectric properties of quantum dots.
    Zimbovskaya NA
    J Chem Phys; 2014 Mar; 140(10):104706. PubMed ID: 24628195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Coulomb Blockade on the Charge Transport through the Topological States of Finite Armchair Graphene Nanoribbons and Heterostructures.
    Kuo DMT
    Nanomaterials (Basel); 2023 May; 13(11):. PubMed ID: 37299660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of Coulomb interactions on nonlinear thermovoltage and thermocurrent in quantum dots.
    Zimbovskaya NA
    J Chem Phys; 2015 Jun; 142(24):244310. PubMed ID: 26133431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport properties of an Aharonov-Bohm ring with strong interdot Coulomb interaction.
    Liu YS; Chen H; Yang XF
    J Phys Condens Matter; 2007 Jun; 19(24):246201. PubMed ID: 21694045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heat Driven Transport in Serial Double Quantum Dot Devices.
    Dorsch S; Svilans A; Josefsson M; Goldozian B; Kumar M; Thelander C; Wacker A; Burke A
    Nano Lett; 2021 Jan; 21(2):988-994. PubMed ID: 33459021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermoelectric effect in an Aharonov-Bohm ring with an embedded quantum dot.
    Zheng J; Chi F; Lu XD; Zhang KC
    Nanoscale Res Lett; 2012 Feb; 7(1):157. PubMed ID: 22369454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of inter-dot Coulomb interaction on the charge and energy transport properties of a five-terminal system consisting of three Coulomb-coupled quantum dots.
    Safdari S; Soltani M; Rashedi G
    Nanotechnology; 2023 Aug; 34(46):. PubMed ID: 37579747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermoelectric energy harvesting with quantum dots.
    Sothmann B; Sánchez R; Jordan AN
    Nanotechnology; 2015 Jan; 26(3):032001. PubMed ID: 25549281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermoelectric properties of a weakly coupled quantum dot: enhanced thermoelectric efficiency.
    Tsaousidou M; Triberis GP
    J Phys Condens Matter; 2010 Sep; 22(35):355304. PubMed ID: 21403283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Coulomb Blockade in Coupled Quantum Dots.
    Livermore C; Crouch CH; Westervelt RM; Campman KL; Gossard AC
    Science; 1996 Nov; 274(5291):1332-5. PubMed ID: 8910263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spin-dependent thermoelectric properties of a Kondo-correlated quantum dot with Rashba spin-orbit coupling.
    Karwacki L; Trocha P; Barnaś J
    J Phys Condens Matter; 2013 Dec; 25(50):505305. PubMed ID: 24275387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superior thermoelectric properties through triangular triple quantum dots (TTQD) attached to one metallic and one superconducting lead.
    Yao H; Cheng CP; Li LL; Guo R; Guo Y; Zhang C
    Nanoscale Adv; 2023 Feb; 5(4):1199-1211. PubMed ID: 36798494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic uncertainty relation in quantum thermoelectric junctions.
    Liu J; Segal D
    Phys Rev E; 2019 Jun; 99(6-1):062141. PubMed ID: 31330645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-Electron Double Quantum Dots in Bilayer Graphene.
    Banszerus L; Möller S; Icking E; Watanabe K; Taniguchi T; Volk C; Stampfer C
    Nano Lett; 2020 Mar; 20(3):2005-2011. PubMed ID: 32083885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.