These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 33003734)

  • 1. Recursive evaluation and iterative contraction of N-body equivariant features.
    Nigam J; Pozdnyakov S; Ceriotti M
    J Chem Phys; 2020 Sep; 153(12):121101. PubMed ID: 33003734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Equivariant representations for molecular Hamiltonians and N-center atomic-scale properties.
    Nigam J; Willatt MJ; Ceriotti M
    J Chem Phys; 2022 Jan; 156(1):014115. PubMed ID: 34998321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient implementation of atom-density representations.
    Musil F; Veit M; Goscinski A; Fraux G; Willatt MJ; Stricker M; Junge T; Ceriotti M
    J Chem Phys; 2021 Mar; 154(11):114109. PubMed ID: 33752353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atom-density representations for machine learning.
    Willatt MJ; Musil F; Ceriotti M
    J Chem Phys; 2019 Apr; 150(15):154110. PubMed ID: 31005079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unified theory of atom-centered representations and message-passing machine-learning schemes.
    Nigam J; Pozdnyakov S; Fraux G; Ceriotti M
    J Chem Phys; 2022 May; 156(20):204115. PubMed ID: 35649823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporating long-range physics in atomic-scale machine learning.
    Grisafi A; Ceriotti M
    J Chem Phys; 2019 Nov; 151(20):204105. PubMed ID: 31779318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wigner kernels: Body-ordered equivariant machine learning without a basis.
    Bigi F; Pozdnyakov SN; Ceriotti M
    J Chem Phys; 2024 Jul; 161(4):. PubMed ID: 39056390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tensor-Reduced Atomic Density Representations.
    Darby JP; Kovács DP; Batatia I; Caro MA; Hart GLW; Ortner C; Csányi G
    Phys Rev Lett; 2023 Jul; 131(2):028001. PubMed ID: 37505943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unsupervised machine learning in atomistic simulations, between predictions and understanding.
    Ceriotti M
    J Chem Phys; 2019 Apr; 150(15):150901. PubMed ID: 31005087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal radial basis for density-based atomic representations.
    Goscinski A; Musil F; Pozdnyakov S; Nigam J; Ceriotti M
    J Chem Phys; 2021 Sep; 155(10):104106. PubMed ID: 34525832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feedback control of unstable periodic orbits in equivariant Hopf bifurcation problems.
    Postlethwaite CM; Brown G; Silber M
    Philos Trans A Math Phys Eng Sci; 2013 Sep; 371(1999):20120467. PubMed ID: 23960225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-similarity and recursion as default modes in human cognition.
    Fischmeister FP; Martins MJD; Beisteiner R; Fitch WT
    Cortex; 2017 Dec; 97():183-201. PubMed ID: 27780529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Symmetry-Adapted Machine Learning for Tensorial Properties of Atomistic Systems.
    Grisafi A; Wilkins DM; Csányi G; Ceriotti M
    Phys Rev Lett; 2018 Jan; 120(3):036002. PubMed ID: 29400528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local invertibility and sensitivity of atomic structure-feature mappings.
    Pozdnyakov SN; Zhang L; Ortner C; Csányi G; Ceriotti M
    Open Res Eur; 2021; 1():126. PubMed ID: 37645092
    [No Abstract]   [Full Text] [Related]  

  • 15. Fast evaluation of spherical harmonics with sphericart.
    Bigi F; Fraux G; Browning NJ; Ceriotti M
    J Chem Phys; 2023 Aug; 159(6):. PubMed ID: 37551818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitivity and dimensionality of atomic environment representations used for machine learning interatomic potentials.
    Onat B; Ortner C; Kermode JR
    J Chem Phys; 2020 Oct; 153(14):144106. PubMed ID: 33086812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning QM/MM potential using equivariant multiscale model.
    Lei YK; Yagi K; Sugita Y
    J Chem Phys; 2024 Jun; 160(21):. PubMed ID: 38828815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tensor species and symmetric functions.
    Méndez M
    Proc Natl Acad Sci U S A; 1991 Nov; 88(21):9892-4. PubMed ID: 11607233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A smooth basis for atomistic machine learning.
    Bigi F; Huguenin-Dumittan KK; Ceriotti M; Manolopoulos DE
    J Chem Phys; 2022 Dec; 157(23):234101. PubMed ID: 36550032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic selection of atomic fingerprints and reference configurations for machine-learning potentials.
    Imbalzano G; Anelli A; Giofré D; Klees S; Behler J; Ceriotti M
    J Chem Phys; 2018 Jun; 148(24):241730. PubMed ID: 29960368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.