These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 33003738)

  • 1. Molecular second-quantized Hamiltonian: Electron correlation and non-adiabatic coupling treated on an equal footing.
    Sibaev M; Polyak I; Manby FR; Knowles PJ
    J Chem Phys; 2020 Sep; 153(12):124102. PubMed ID: 33003738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-adiabatic quantum dynamics without potential energy surfaces based on second-quantized electrons: Application within the framework of the MCTDH method.
    Sasmal S; Vendrell O
    J Chem Phys; 2020 Oct; 153(15):154110. PubMed ID: 33092359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A correlated-polaron electronic propagator: open electronic dynamics beyond the Born-Oppenheimer approximation.
    Parkhill JA; Markovich T; Tempel DG; Aspuru-Guzik A
    J Chem Phys; 2012 Dec; 137(22):22A547. PubMed ID: 23249084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time dependent vibrational electronic coupled cluster (VECC) theory for non-adiabatic nuclear dynamics.
    Bao S; Raymond N; Nooijen M
    J Chem Phys; 2024 Mar; 160(9):. PubMed ID: 38426527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The exact molecular wavefunction as a product of an electronic and a nuclear wavefunction.
    Cederbaum LS
    J Chem Phys; 2013 Jun; 138(22):224110. PubMed ID: 23781786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular spectroscopy beyond the born-oppenheimer approximation: a computational study of the CF(3)O and CF(3)S radicals.
    Marenich AV; Boggs JE
    J Phys Chem A; 2007 Nov; 111(44):11214-20. PubMed ID: 17469808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tensor representation techniques for full configuration interaction: A Fock space approach using the canonical product format.
    Böhm KH; Auer AA; Espig M
    J Chem Phys; 2016 Jun; 144(24):244102. PubMed ID: 27369492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vibrational Electronic-Thermofield Coupled Cluster (VE-TFCC) Theory for Quantum Simulations of Vibronic Coupling Systems at Thermal Equilibrium.
    Bao S; Raymond N; Zeng T; Nooijen M
    J Chem Theory Comput; 2024 Jul; 20(14):5882-5900. PubMed ID: 38950345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Communication: Vibrational and vibronic coherences in the two dimensional spectroscopy of coupled electron-nuclear motion.
    Albert J; Falge M; Gomez S; Sola IR; Hildenbrand H; Engel V
    J Chem Phys; 2015 Jul; 143(4):041102. PubMed ID: 26233097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relaxation dynamics in quantum dissipative systems: the microscopic effect of intramolecular vibrational energy redistribution.
    Uranga-Piña L; Tremblay JC
    J Chem Phys; 2014 Aug; 141(7):074703. PubMed ID: 25149802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mixed-Valence Molecular Unit for Quantum Cellular Automata: Beyond the Born-Oppenheimer Paradigm through the Symmetry-Assisted Vibronic Approach.
    Clemente-Juan JM; Palii A; Coronado E; Tsukerblat B
    J Chem Theory Comput; 2016 Aug; 12(8):3545-60. PubMed ID: 27398679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nodeless vibrational amplitudes and quantum nonadiabatic dynamics in the nested funnel for a pseudo Jahn-Teller molecule or homodimer.
    Peters WK; Tiwari V; Jonas DM
    J Chem Phys; 2017 Nov; 147(19):194306. PubMed ID: 29166106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excited electronic states and nonadiabatic effects in contemporary chemical dynamics.
    Mahapatra S
    Acc Chem Res; 2009 Aug; 42(8):1004-15. PubMed ID: 19456094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exact and approximate symmetry projectors for the electronic structure problem on a quantum computer.
    Yen TC; Lang RA; Izmaylov AF
    J Chem Phys; 2019 Oct; 151(16):164111. PubMed ID: 31675900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite-temperature electronic simulations without the Born-Oppenheimer constraint.
    Mazzola G; Zen A; Sorella S
    J Chem Phys; 2012 Oct; 137(13):134112. PubMed ID: 23039590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single surface beyond Born-Oppenheimer equation for a three-state model Hamiltonian of Na3 cluster.
    Kumar Paul A; Sardar S; Sarkar B; Adhikari S
    J Chem Phys; 2009 Sep; 131(12):124312. PubMed ID: 19791886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic structure and optical properties of quantum crystals from first principles calculations in the Born-Oppenheimer approximation.
    Gorelov V; Ceperley DM; Holzmann M; Pierleoni C
    J Chem Phys; 2020 Dec; 153(23):234117. PubMed ID: 33353339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the adiabatic representation of Meyer-Miller electronic-nuclear dynamics.
    Cotton SJ; Liang R; Miller WH
    J Chem Phys; 2017 Aug; 147(6):064112. PubMed ID: 28810754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gaussians for Electronic and Rovibrational Quantum Dynamics.
    Woźniak AP; Adamowicz L; Pedersen TB; Kvaal S
    J Phys Chem A; 2024 May; 128(18):3659-3671. PubMed ID: 38687971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum dynamics of a vibronically coupled linear chain using a surrogate Hamiltonian approach.
    Lee MH; Troisi A
    J Chem Phys; 2016 Jun; 144(21):214106. PubMed ID: 27276944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.