These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 33003748)

  • 1. A combination of machine learning and infrequent metadynamics to efficiently predict kinetic rates, transition states, and molecular determinants of drug dissociation from G protein-coupled receptors.
    Lamim Ribeiro JM; Provasi D; Filizola M
    J Chem Phys; 2020 Sep; 153(12):124105. PubMed ID: 33003748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined Free-Energy Calculation and Machine Learning Methods for Understanding Ligand Unbinding Kinetics.
    Badaoui M; Buigues PJ; Berta D; Mandana GM; Gu H; Földes T; Dickson CJ; Hornak V; Kato M; Molteni C; Parsons S; Rosta E
    J Chem Theory Comput; 2022 Apr; 18(4):2543-2555. PubMed ID: 35195418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can One Trust Kinetic and Thermodynamic Observables from Biased Metadynamics Simulations?: Detailed Quantitative Benchmarks on Millimolar Drug Fragment Dissociation.
    Pramanik D; Smith Z; Kells A; Tiwary P
    J Phys Chem B; 2019 May; 123(17):3672-3678. PubMed ID: 30974941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The prediction of protein-ligand unbinding for modern drug discovery.
    Zhang Q; Zhao N; Meng X; Yu F; Yao X; Liu H
    Expert Opin Drug Discov; 2022 Feb; 17(2):191-205. PubMed ID: 34731059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating Small-Molecule Ligand Binding to G Protein-Coupled Receptors with Biased or Unbiased Molecular Dynamics Simulations.
    Marino KA; Filizola M
    Methods Mol Biol; 2018; 1705():351-364. PubMed ID: 29188572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity Map and Transition Pathways of G Protein-Coupled Receptor Revealed by Machine Learning.
    Mollaei P; Barati Farimani A
    J Chem Inf Model; 2023 Apr; 63(8):2296-2304. PubMed ID: 37036101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metadynamics simulations leveraged by statistical analyses and artificial intelligence-based tools to inform the discovery of G protein-coupled receptor ligands.
    Salas-Estrada L; Fiorillo B; Filizola M
    Front Endocrinol (Lausanne); 2022; 13():1099715. PubMed ID: 36619585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating drug-target association and dissociation mechanisms using metadynamics-based algorithms.
    Cavalli A; Spitaleri A; Saladino G; Gervasio FL
    Acc Chem Res; 2015 Feb; 48(2):277-85. PubMed ID: 25496113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Dynamic Process of Drug-GPCR Binding at Either Orthosteric or Allosteric Sites Evaluated by Metadynamics.
    Schneider S; Provasi D; Filizola M
    Methods Mol Biol; 2015; 1335():277-94. PubMed ID: 26260607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting Residence Time of GPCR Ligands with Machine Learning.
    Potterton A; Heifetz A; Townsend-Nicholson A
    Methods Mol Biol; 2022; 2390():191-205. PubMed ID: 34731470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward High-Throughput Predictive Modeling of Protein Binding/Unbinding Kinetics.
    Chiu SH; Xie L
    J Chem Inf Model; 2016 Jun; 56(6):1164-74. PubMed ID: 27159844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. G Protein-Coupled Receptor-Ligand Dissociation Rates and Mechanisms from τRAMD Simulations.
    Kokh DB; Wade RC
    J Chem Theory Comput; 2021 Oct; 17(10):6610-6623. PubMed ID: 34495672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Metadynamics-Based Protocol for the Determination of GPCR-Ligand Binding Modes.
    Söldner CA; Horn AHC; Sticht H
    Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31013635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Basis of Ligand Dissociation from G Protein-Coupled Receptors and Predicting Residence Time.
    Guo D; IJzerman AP
    Methods Mol Biol; 2018; 1705():197-206. PubMed ID: 29188564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding Kinetics and Pathways of Ligands to GPCRs.
    Strasser A; Wittmann HJ; Seifert R
    Trends Pharmacol Sci; 2017 Aug; 38(8):717-732. PubMed ID: 28645833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Attempting Well-Tempered Funnel Metadynamics Simulations for the Evaluation of the Binding Kinetics of Methionine Aminopeptidase-II Inhibitors.
    Rubina ; Moin ST
    J Chem Inf Model; 2023 Dec; 63(24):7729-7743. PubMed ID: 38059911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GPCRs: What Can We Learn from Molecular Dynamics Simulations?
    Velgy N; Hedger G; Biggin PC
    Methods Mol Biol; 2018; 1705():133-158. PubMed ID: 29188561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of water and steric constraints in the kinetics of cavity-ligand unbinding.
    Tiwary P; Mondal J; Morrone JA; Berne BJ
    Proc Natl Acad Sci U S A; 2015 Sep; 112(39):12015-9. PubMed ID: 26371312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transient States and Barriers from Molecular Simulations and the Milestoning Theory: Kinetics in Ligand-Protein Recognition and Compound Design.
    Tang Z; Chen SH; Chang CA
    J Chem Theory Comput; 2020 Mar; 16(3):1882-1895. PubMed ID: 32031801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine Learning Analysis of τRAMD Trajectories to Decipher Molecular Determinants of Drug-Target Residence Times.
    Kokh DB; Kaufmann T; Kister B; Wade RC
    Front Mol Biosci; 2019; 6():36. PubMed ID: 31179286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.