BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 33003755)

  • 1. A workflow for exploring ligand dissociation from a macromolecule: Efficient random acceleration molecular dynamics simulation and interaction fingerprint analysis of ligand trajectories.
    Kokh DB; Doser B; Richter S; Ormersbach F; Cheng X; Wade RC
    J Chem Phys; 2020 Sep; 153(12):125102. PubMed ID: 33003755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning Analysis of τRAMD Trajectories to Decipher Molecular Determinants of Drug-Target Residence Times.
    Kokh DB; Kaufmann T; Kister B; Wade RC
    Front Mol Biosci; 2019; 6():36. PubMed ID: 31179286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ligand unbinding mechanisms and kinetics for T4 lysozyme mutants from τRAMD simulations.
    Nunes-Alves A; Kokh DB; Wade RC
    Curr Res Struct Biol; 2021; 3():106-111. PubMed ID: 34235490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. G Protein-Coupled Receptor-Ligand Dissociation Rates and Mechanisms from τRAMD Simulations.
    Kokh DB; Wade RC
    J Chem Theory Comput; 2021 Oct; 17(10):6610-6623. PubMed ID: 34495672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of Drug-Target Residence Times by τ-Random Acceleration Molecular Dynamics Simulations.
    Kokh DB; Amaral M; Bomke J; Grädler U; Musil D; Buchstaller HP; Dreyer MK; Frech M; Lowinski M; Vallee F; Bianciotto M; Rak A; Wade RC
    J Chem Theory Comput; 2018 Jul; 14(7):3859-3869. PubMed ID: 29768913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined Free-Energy Calculation and Machine Learning Methods for Understanding Ligand Unbinding Kinetics.
    Badaoui M; Buigues PJ; Berta D; Mandana GM; Gu H; Földes T; Dickson CJ; Hornak V; Kato M; Molteni C; Parsons S; Rosta E
    J Chem Theory Comput; 2022 Apr; 18(4):2543-2555. PubMed ID: 35195418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward Achieving Efficient and Accurate Ligand-Protein Unbinding with Deep Learning and Molecular Dynamics through RAVE.
    Lamim Ribeiro JM; Tiwary P
    J Chem Theory Comput; 2019 Jan; 15(1):708-719. PubMed ID: 30525598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring ligand dissociation pathways from aminopeptidase N using random acceleration molecular dynamics simulation.
    Liu Y; Tu G; Lai X; Kuang B; Li S
    J Mol Model; 2016 Oct; 22(10):236. PubMed ID: 27624165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Baseline Model for Predicting Protein-Ligand Unbinding Kinetics through Machine Learning.
    Amangeldiuly N; Karlov D; Fedorov MV
    J Chem Inf Model; 2020 Dec; 60(12):5946-5956. PubMed ID: 33183000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational Workflow for Refining AlphaFold Models in Drug Design Using Kinetic and Thermodynamic Binding Calculations: A Case Study for the Unresolved Inactive Human Adenosine A
    Stampelou M; Ladds G; Kolocouris A
    J Phys Chem B; 2024 Feb; 128(4):914-936. PubMed ID: 38236582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The prediction of protein-ligand unbinding for modern drug discovery.
    Zhang Q; Zhao N; Meng X; Yu F; Yao X; Liu H
    Expert Opin Drug Discov; 2022 Feb; 17(2):191-205. PubMed ID: 34731059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exhaustively Exploring the Prevalent Interaction Pathways of Ligands Targeting the Ligand-Binding Pocket of Farnesoid X Receptor
    Xiang S; Wang Z; Tang R; Wang L; Wang Q; Yu Y; Deng Q; Hou T; Hao H; Sun H
    J Chem Inf Model; 2023 Dec; 63(23):7529-7544. PubMed ID: 37983966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient States and Barriers from Molecular Simulations and the Milestoning Theory: Kinetics in Ligand-Protein Recognition and Compound Design.
    Tang Z; Chen SH; Chang CA
    J Chem Theory Comput; 2020 Mar; 16(3):1882-1895. PubMed ID: 32031801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of Protein-Ligand Unbinding Kinetics Using Non-Equilibrium Targeted Molecular Dynamics Simulations.
    Wolf S; Amaral M; Lowinski M; Vallée F; Musil D; Güldenhaupt J; Dreyer MK; Bomke J; Frech M; Schlitter J; Gerwert K
    J Chem Inf Model; 2019 Dec; 59(12):5135-5147. PubMed ID: 31697501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward High-Throughput Predictive Modeling of Protein Binding/Unbinding Kinetics.
    Chiu SH; Xie L
    J Chem Inf Model; 2016 Jun; 56(6):1164-74. PubMed ID: 27159844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein-Ligand Dissociation Rate Constant from All-Atom Simulation.
    Maximova E; Postnikov EB; Lavrova AI; Farafonov V; Nerukh D
    J Phys Chem Lett; 2021 Nov; 12(43):10631-10636. PubMed ID: 34704768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular modeling revealed that ligand dissociation from thyroid hormone receptors is affected by receptor heterodimerization.
    Zhuang S; Bao L; Linhananta A; Liu W
    J Mol Graph Model; 2013 Jul; 44():155-60. PubMed ID: 23831995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contact Map Fingerprints of Protein-Ligand Unbinding Trajectories Reveal Mechanisms Determining Residence Times Computed from Scaled Molecular Dynamics.
    Bianciotto M; Gkeka P; Kokh DB; Wade RC; Minoux H
    J Chem Theory Comput; 2021 Oct; 17(10):6522-6535. PubMed ID: 34494849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Data-driven classification of ligand unbinding pathways.
    Ray D; Parrinello M
    Proc Natl Acad Sci U S A; 2024 Mar; 121(10):e2313542121. PubMed ID: 38412121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accelerating Molecular Dynamics Simulations for Drug Discovery.
    Koirala K; Joshi K; Adediwura V; Wang J; Do H; Miao Y
    Methods Mol Biol; 2024; 2714():187-202. PubMed ID: 37676600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.