These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 33003782)

  • 1. Ion beam diagnostic for the assessment of miniaturized electric propulsion systems.
    Habl L; Rafalskyi D; Lafleur T
    Rev Sci Instrum; 2020 Sep; 91(9):093501. PubMed ID: 33003782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Faraday cup sizing for electric propulsion ion beam study: Case of a field-emission-electric propulsion thruster.
    Hugonnaud V; Mazouffre S; Krejci D
    Rev Sci Instrum; 2021 Aug; 92(8):084502. PubMed ID: 34470437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electric field measurement in microwave discharge ion thruster with electro-optic probe.
    Ise T; Tsukizaki R; Togo H; Koizumi H; Kuninaka H
    Rev Sci Instrum; 2012 Dec; 83(12):124702. PubMed ID: 23278009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Note: An advanced in situ diagnostic system for characterization of electric propulsion thrusters and ion beam sources.
    Bundesmann C; Tartz M; Scholze F; Leiter HJ; Scortecci F; Gnizdor RY; Neumann H
    Rev Sci Instrum; 2010 Apr; 81(4):046106. PubMed ID: 20441379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct-current current transformer for the measurement of an electric propulsion ion beam.
    Volkmar C; Geile C; Neumann A; Hannemann K
    Rev Sci Instrum; 2019 Mar; 90(3):033303. PubMed ID: 30927767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An ion thruster internal discharge chamber electrostatic probe diagnostic technique using a high-speed probe positioning system.
    Herman DA; Gallimore AD
    Rev Sci Instrum; 2008 Jan; 79(1):013302. PubMed ID: 18248026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization, Test and Diagnostics of Miniaturized Hall Thrusters.
    Lim JWM; Levchenko I; Rohaizat MWAB; Huang S; Xu L; Sun YF; Potrivitu GC; Yee JS; Sim RZW; Wang Y; Levchenko S; Bazaka K; Xu S
    J Vis Exp; 2019 Feb; (144):. PubMed ID: 30829319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a cantilever beam thrust stand for electric propulsion thrusters.
    Zhang H; Li DT; Li H
    Rev Sci Instrum; 2020 Nov; 91(11):115104. PubMed ID: 33261444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ion thrusters for electric propulsion: Scientific issues developing a niche technology into a game changer.
    Holste K; Dietz P; Scharmann S; Keil K; Henning T; Zschätzsch D; Reitemeyer M; Nauschütt B; Kiefer F; Kunze F; Zorn J; Heiliger C; Joshi N; Probst U; Thüringer R; Volkmar C; Packan D; Peterschmitt S; Brinkmann KT; Zaunick HG; Thoma MH; Kretschmer M; Leiter HJ; Schippers S; Hannemann K; Klar PJ
    Rev Sci Instrum; 2020 Jun; 91(6):061101. PubMed ID: 32611046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high power ion thruster for deep space missions.
    Polk JE; Goebel DM; Snyder JS; Schneider AC; Johnson LK; Sengupta A
    Rev Sci Instrum; 2012 Jul; 83(7):073306. PubMed ID: 22852684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D ion velocity distribution function measurement in an electric thruster using laser induced fluorescence tomography.
    Elias PQ; Jarrige J; Cucchetti E; Cannat F; Packan D
    Rev Sci Instrum; 2017 Sep; 88(9):093511. PubMed ID: 28964238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A high sensitivity momentum flux measuring instrument for plasma thruster exhausts and diffusive plasmas.
    West MD; Charles C; Boswell RW
    Rev Sci Instrum; 2009 May; 80(5):053509. PubMed ID: 19485509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thirty percent conversion efficiency from radiofrequency power to thrust energy in a magnetic nozzle plasma thruster.
    Takahashi K
    Sci Rep; 2022 Nov; 12(1):18618. PubMed ID: 36357485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-orbit demonstration of an iodine electric propulsion system.
    Rafalskyi D; Martínez JM; Habl L; Zorzoli Rossi E; Proynov P; Boré A; Baret T; Poyet A; Lafleur T; Dudin S; Aanesland A
    Nature; 2021 Nov; 599(7885):411-415. PubMed ID: 34789903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of a torsional balance for thrust measurements of Hall effect and microwave-based space propulsion systems.
    Masillo S; Stubbing J; Swar K; Staab D; Garbayo A; Lucca Fabris A
    Rev Sci Instrum; 2022 Nov; 93(11):114501. PubMed ID: 36461544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The beam divergence of an indium LMIS at a distance of 50 μm as determined by plasma diagnostic measurements.
    Vasiljevich I; Tajmar M
    Ultramicroscopy; 2011 Jul; 111(8):969-72. PubMed ID: 21740859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a high dynamic range retarding potential analyzer for electric propulsion plume diagnosis.
    Maystrenko D; Shagayda A; Kravchenko D; Lovtsov A
    Rev Sci Instrum; 2022 Jul; 93(7):073504. PubMed ID: 35922286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement in the spatial resolution of heavy ion beam probe measurements through application of ion optics.
    Crowley TP; Demers DR; Fimognari PJ
    Rev Sci Instrum; 2021 Jan; 92(1):013503. PubMed ID: 33514219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a miniature microwave electron cyclotron resonance plasma ion thruster for exospheric micro-propulsion.
    Dey I; Toyoda Y; Yamamoto N; Nakashima H
    Rev Sci Instrum; 2015 Dec; 86(12):123505. PubMed ID: 26724025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calibrating ion density profile measurements in ion thruster beam plasma.
    Zhang Z; Tang H; Ren J; Zhang Z; Wang J
    Rev Sci Instrum; 2016 Nov; 87(11):113502. PubMed ID: 27910433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.