These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 33004850)
1. Electrowetting lens with large aperture and focal length tunability. Song X; Zhang H; Li D; Jia D; Liu T Sci Rep; 2020 Oct; 10(1):16318. PubMed ID: 33004850 [TBL] [Abstract][Full Text] [Related]
2. Design of spherical aberration free liquid-filled cylindrical zoom lenses over a wide focal length range based on ZEMAX. Sun L; Sheng S; Meng W; Wang Y; Ou Q; Pu X Opt Express; 2020 Mar; 28(5):6806-6819. PubMed ID: 32225920 [TBL] [Abstract][Full Text] [Related]
3. Tunable fluidic lens with a dynamic high-order aberration control. Zhao P; Sauter D; Zappe H Appl Opt; 2021 Jun; 60(18):5302-5311. PubMed ID: 34263767 [TBL] [Abstract][Full Text] [Related]
4. Numerical simulation for meniscus shape and optical performance of a MEMS-based liquid micro-lens. Lee SL; Yang CF Opt Express; 2008 Nov; 16(24):19995-20007. PubMed ID: 19030086 [TBL] [Abstract][Full Text] [Related]
5. Recent Developments in Optofluidic Lens Technology. Mishra K; van den Ende D; Mugele F Micromachines (Basel); 2016 Jun; 7(6):. PubMed ID: 30404276 [TBL] [Abstract][Full Text] [Related]
7. Optofluidic lens based on electrowetting liquid piston. Li LY; Yuan RY; Wang JH; Li L; Wang QH Sci Rep; 2019 Sep; 9(1):13062. PubMed ID: 31506551 [TBL] [Abstract][Full Text] [Related]
8. Measurement and modeling of electrowetting lens oscillations using digital holographic interferometry and Bessel and Legendre polynomial functions. Schipf DR; Wang WC Opt Express; 2019 Jun; 27(12):17274-17282. PubMed ID: 31252940 [TBL] [Abstract][Full Text] [Related]
10. Design and wavefront characterization of an electrically tunable aspherical optofluidic lens. Mishra K; Narayanan A; Mugele F Opt Express; 2019 Jun; 27(13):17601-17609. PubMed ID: 31252717 [TBL] [Abstract][Full Text] [Related]
11. Electrowetting-driven liquid lens for ultrasound: Enabling controllable focal length and flexible beam steering. Hsieh ZH; Fan CH; Lin YC; Yeh CK Ultrasonics; 2023 Dec; 135():107147. PubMed ID: 37651840 [TBL] [Abstract][Full Text] [Related]
12. Simulation Analysis of a Wavefront Reconstruction of a Large Aperture Laser Beam. Wang G; Hou Z; Qin L; Jing X; Wu Y Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679420 [TBL] [Abstract][Full Text] [Related]
14. Aberration-free intraocular lenses - What does this really mean? Langenbucher A; Schröder S; Cayless A; Eppig T Z Med Phys; 2017 Sep; 27(3):255-259. PubMed ID: 28476316 [TBL] [Abstract][Full Text] [Related]
15. Numerical analysis of wavefront aberration correction using multielectrode electrowetting-based devices. Zohrabi M; Cormack RH; Mccullough C; Supekar OD; Gibson EA; Bright VM; Gopinath JT Opt Express; 2017 Dec; 25(25):31451-31461. PubMed ID: 29245820 [TBL] [Abstract][Full Text] [Related]
16. High NA objective lens wavefront aberration measurement using a cat-eye retroreflector and Zernike polynomial. Li P; Tang F; Wang X; Li J Opt Express; 2021 Sep; 29(20):31812-31835. PubMed ID: 34615266 [TBL] [Abstract][Full Text] [Related]
17. Fabrication and characterization of a two-dimensional individually addressable electrowetting microlens array. Gilinsky SD; Zohrabi M; Lim WY; Supekar OD; Bright VM; Gopinath JT Opt Express; 2023 Sep; 31(19):30550-30561. PubMed ID: 37710595 [TBL] [Abstract][Full Text] [Related]
18. Design and fabrication of a focus-tunable liquid cylindrical lens based on electrowetting. Wang D; Hu D; Zhou Y; Sun L Opt Express; 2022 Dec; 30(26):47430-47439. PubMed ID: 36558671 [TBL] [Abstract][Full Text] [Related]
19. Spatially resolved wavefront aberrations of ophthalmic progressive-power lenses in normal viewing conditions. Villegas EA; Artal P Optom Vis Sci; 2003 Feb; 80(2):106-14. PubMed ID: 12597325 [TBL] [Abstract][Full Text] [Related]