These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 33004850)

  • 1. Electrowetting lens with large aperture and focal length tunability.
    Song X; Zhang H; Li D; Jia D; Liu T
    Sci Rep; 2020 Oct; 10(1):16318. PubMed ID: 33004850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of spherical aberration free liquid-filled cylindrical zoom lenses over a wide focal length range based on ZEMAX.
    Sun L; Sheng S; Meng W; Wang Y; Ou Q; Pu X
    Opt Express; 2020 Mar; 28(5):6806-6819. PubMed ID: 32225920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable fluidic lens with a dynamic high-order aberration control.
    Zhao P; Sauter D; Zappe H
    Appl Opt; 2021 Jun; 60(18):5302-5311. PubMed ID: 34263767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical simulation for meniscus shape and optical performance of a MEMS-based liquid micro-lens.
    Lee SL; Yang CF
    Opt Express; 2008 Nov; 16(24):19995-20007. PubMed ID: 19030086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Developments in Optofluidic Lens Technology.
    Mishra K; van den Ende D; Mugele F
    Micromachines (Basel); 2016 Jun; 7(6):. PubMed ID: 30404276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spherical aberration free liquid-filled tunable lens with variable thickness membrane.
    Zhao P; Ataman Ç; Zappe H
    Opt Express; 2015 Aug; 23(16):21264-78. PubMed ID: 26367975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optofluidic lens based on electrowetting liquid piston.
    Li LY; Yuan RY; Wang JH; Li L; Wang QH
    Sci Rep; 2019 Sep; 9(1):13062. PubMed ID: 31506551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement and modeling of electrowetting lens oscillations using digital holographic interferometry and Bessel and Legendre polynomial functions.
    Schipf DR; Wang WC
    Opt Express; 2019 Jun; 27(12):17274-17282. PubMed ID: 31252940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of electrowetting lens and prism arrays for wavefront compensation.
    Gopinath JT; Bright VM; Cogswell CC; Niederriter RD; Watson A; Zahreddine R; Cormack RH
    Appl Opt; 2012 Sep; 51(27):6618-23. PubMed ID: 23033033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and wavefront characterization of an electrically tunable aspherical optofluidic lens.
    Mishra K; Narayanan A; Mugele F
    Opt Express; 2019 Jun; 27(13):17601-17609. PubMed ID: 31252717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation Analysis of a Wavefront Reconstruction of a Large Aperture Laser Beam.
    Wang G; Hou Z; Qin L; Jing X; Wu Y
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gravity-immune liquid-filled tunable lens with reduced spherical aberration.
    Zhao P; Ataman Ç; Zappe H
    Appl Opt; 2016 Oct; 55(28):7816-7823. PubMed ID: 27828011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aberration-free intraocular lenses - What does this really mean?
    Langenbucher A; Schröder S; Cayless A; Eppig T
    Z Med Phys; 2017 Sep; 27(3):255-259. PubMed ID: 28476316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical analysis of wavefront aberration correction using multielectrode electrowetting-based devices.
    Zohrabi M; Cormack RH; Mccullough C; Supekar OD; Gibson EA; Bright VM; Gopinath JT
    Opt Express; 2017 Dec; 25(25):31451-31461. PubMed ID: 29245820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High NA objective lens wavefront aberration measurement using a cat-eye retroreflector and Zernike polynomial.
    Li P; Tang F; Wang X; Li J
    Opt Express; 2021 Sep; 29(20):31812-31835. PubMed ID: 34615266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and fabrication of a focus-tunable liquid cylindrical lens based on electrowetting.
    Wang D; Hu D; Zhou Y; Sun L
    Opt Express; 2022 Dec; 30(26):47430-47439. PubMed ID: 36558671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatially resolved wavefront aberrations of ophthalmic progressive-power lenses in normal viewing conditions.
    Villegas EA; Artal P
    Optom Vis Sci; 2003 Feb; 80(2):106-14. PubMed ID: 12597325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the chromatic aberration of microlenses.
    Ruffieux P; Scharf T; Herzig HP; Völkel R; Weible KJ
    Opt Express; 2006 May; 14(11):4687-94. PubMed ID: 19516624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Universal membrane-based tunable liquid lens design for dynamically correcting spherical aberration over user-defined focal length range.
    Zhou H; Zhang X; Xu Z; Wu P; Yu H
    Opt Express; 2019 Dec; 27(26):37667-37679. PubMed ID: 31878544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An improved low-optical-power variable focus lens with a large aperture.
    Wang L; Oku H; Ishikawa M
    Opt Express; 2014 Aug; 22(16):19448-56. PubMed ID: 25321028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.