These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 33004914)

  • 1. Reconstruction and analysis of genome-scale metabolic model of weak Crabtree positive yeast Lachancea kluyveri.
    Nanda P; Patra P; Das M; Ghosh A
    Sci Rep; 2020 Oct; 10(1):16314. PubMed ID: 33004914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coevolution with bacteria drives the evolution of aerobic fermentation in Lachancea kluyveri.
    Zhou N; Swamy KB; Leu JY; McDonald MJ; Galafassi S; Compagno C; Piškur J
    PLoS One; 2017; 12(3):e0173318. PubMed ID: 28282411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global expression analysis of the yeast Lachancea (Saccharomyces) kluyveri reveals new URC genes involved in pyrimidine catabolism.
    Andersson Rasmussen A; Kandasamy D; Beck H; Crosby SD; Björnberg O; Schnackerz KD; Piškur J
    Eukaryot Cell; 2014 Jan; 13(1):31-42. PubMed ID: 24186952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-scale metabolic reconstruction and analysis for Clostridium kluyveri.
    Zou W; Ye G; Zhang J; Zhao C; Zhao X; Zhang K
    Genome; 2018 Aug; 61(8):605-613. PubMed ID: 29920212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aerobic glucose metabolism of Saccharomyces kluyveri: growth, metabolite production, and quantification of metabolic fluxes.
    Møller K; Christensen B; Förster J; Piskur J; Nielsen J; Olsson L
    Biotechnol Bioeng; 2002 Jan; 77(2):186-93. PubMed ID: 11753925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional roles of a predicted branched chain aminotransferase encoded by the LkBAT1 gene of the yeast Lachancea kluyveri.
    Montalvo-Arredondo J; Jiménez-Benítez Á; Colón-González M; González-Flores J; Flores-Villegas M; González A; Riego-Ruiz L
    Fungal Genet Biol; 2015 Dec; 85():71-82. PubMed ID: 26563416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Genetic Requirements for Pentose Fermentation in Budding Yeast.
    Mittelman K; Barkai N
    G3 (Bethesda); 2017 Jun; 7(6):1743-1752. PubMed ID: 28404660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts.
    Patra P; Das M; Kundu P; Ghosh A
    Biotechnol Adv; 2021; 47():107695. PubMed ID: 33465474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Yeast-bacteria competition induced new metabolic traits through large-scale genomic rearrangements in Lachancea kluyveri.
    Zhou N; Bottagisi S; Katz M; Schacherer J; Friedrich A; Gojkovic Z; Swamy KBS; Knecht W; Compagno C; Piškur J
    FEMS Yeast Res; 2017 Sep; 17(6):. PubMed ID: 28910985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the yeast short-term Crabtree effect and its origin.
    Hagman A; Säll T; Piškur J
    FEBS J; 2014 Nov; 281(21):4805-14. PubMed ID: 25161062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative comparison of transient growth of Saccharomyces cerevisiae, Saccharomyces kluyveri, and Kluyveromyces lactis.
    Herwig C; Von Stockar U
    Biotechnol Bioeng; 2003 Mar; 81(7):837-47. PubMed ID: 12557317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-scale metabolic modeling and in silico analysis of lipid accumulating yeast Candida tropicalis for dicarboxylic acid production.
    Mishra P; Park GY; Lakshmanan M; Lee HS; Lee H; Chang MW; Ching CB; Ahn J; Lee DY
    Biotechnol Bioeng; 2016 Sep; 113(9):1993-2004. PubMed ID: 26915092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of carbon and nitrogen medium components for biomass production using non-Saccharomyces wine yeasts.
    Schnierda T; Bauer FF; Divol B; van Rensburg E; Görgens JF
    Lett Appl Microbiol; 2014 May; 58(5):478-85. PubMed ID: 24447289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-scale NAD(H/(+)) availability patterns as a differentiating feature between Saccharomyces cerevisiae and Scheffersomyces stipitis in relation to fermentative metabolism.
    Acevedo A; Aroca G; Conejeros R
    PLoS One; 2014; 9(1):e87494. PubMed ID: 24489927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling threshold phenomena, metabolic pathways switches and signals in chemostat-cultivated cells: the Crabtree effect in Saccharomyces cerevisiae.
    Thierie J
    J Theor Biol; 2004 Feb; 226(4):483-501. PubMed ID: 14759654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstruction of a charge balanced genome-scale metabolic model to study the energy-uncoupled growth of Zymomonas mobilis ZM1.
    Motamedian E; Saeidi M; Shojaosadati SA
    Mol Biosyst; 2016 Apr; 12(4):1241-9. PubMed ID: 26883123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Population FBA predicts metabolic phenotypes in yeast.
    Labhsetwar P; Melo MCR; Cole JA; Luthey-Schulten Z
    PLoS Comput Biol; 2017 Sep; 13(9):e1005728. PubMed ID: 28886026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive evaluation of two genome-scale metabolic network models for Scheffersomyces stipitis.
    Damiani AL; He QP; Jeffries TW; Wang J
    Biotechnol Bioeng; 2015 Jun; 112(6):1250-62. PubMed ID: 25580821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-scale metabolic models of Saccharomyces cerevisiae.
    Nookaew I; Olivares-Hernández R; Bhumiratana S; Nielsen J
    Methods Mol Biol; 2011; 759():445-63. PubMed ID: 21863502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Yeast "make-accumulate-consume" life strategy evolved as a multi-step process that predates the whole genome duplication.
    Hagman A; Säll T; Compagno C; Piskur J
    PLoS One; 2013; 8(7):e68734. PubMed ID: 23869229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.