These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

430 related articles for article (PubMed ID: 33004940)

  • 1. Integrated transcriptomic and metabolomic data reveal the flavonoid biosynthesis metabolic pathway in Perilla frutescens (L.) leaves.
    Jiang T; Guo K; Liu L; Tian W; Xie X; Wen S; Wen C
    Sci Rep; 2020 Oct; 10(1):16207. PubMed ID: 33004940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptome analysis and identification of genes associated with ω-3 fatty acid biosynthesis in Perilla frutescens (L.) var. frutescens.
    Kim HU; Lee KR; Shim D; Lee JH; Chen GQ; Hwang S
    BMC Genomics; 2016 Jun; 17():474. PubMed ID: 27342315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptomic analysis of Perilla frutescens seed to insight into the biosynthesis and metabolic of unsaturated fatty acids.
    Liao B; Hao Y; Lu J; Bai H; Guan L; Zhang T
    BMC Genomics; 2018 Mar; 19(1):213. PubMed ID: 29562889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene set by de novo assembly of Perilla species and expression profiling between P. frutescens (L.) var. frutescens and var. crispa.
    Tong W; Kwon SJ; Lee J; Choi IY; Park YJ; Choi SH; Sa KJ; Kim BW; Lee JK
    Gene; 2015 Apr; 559(2):155-63. PubMed ID: 25597767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Throughput Sequencing and De Novo Assembly of Red and Green Forms of the Perilla frutescens var. crispa Transcriptome.
    Fukushima A; Nakamura M; Suzuki H; Saito K; Yamazaki M
    PLoS One; 2015; 10(6):e0129154. PubMed ID: 26070213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative global profiling of Perilla leaf and stem via transcriptomics and metabolomics.
    Xing F; Xiao Q; Gul H; Liu T; Cao W; Zhang Y; Duan H; Li Y; Liang J; Zhang X; Xu D; Liu Z
    Gene; 2024 Dec; 929():148828. PubMed ID: 39122229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-omics analysis of the bioactive constituents biosynthesis of glandular trichome in Perilla frutescens.
    Zhou P; Yin M; Dai S; Bao K; Song C; Liu C; Wu Q
    BMC Plant Biol; 2021 Jun; 21(1):277. PubMed ID: 34144672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative Transcriptome Analysis and Expression of Genes Reveal the Biosynthesis and Accumulation Patterns of Key Flavonoids in Different Varieties of
    Sun L; Yu D; Wu Z; Wang C; Yu L; Wei A; Wang D
    J Agric Food Chem; 2019 Dec; 67(48):13258-13268. PubMed ID: 31714769
    [No Abstract]   [Full Text] [Related]  

  • 9. The Contents of Polyphenols in Perilla frutescens (L.) Britton var. frutescens (Egoma) Leaves are Determined by Vegetative Stage, Spatial Leaf Position, and Timing of Harvesting during the Day.
    Gaihre YR; Tsuge K; Hamajima H; Nagata Y; Yanagita T
    J Oleo Sci; 2021; 70(6):855-859. PubMed ID: 34078762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolomic response of Perilla frutescens leaves, an edible-medicinal herb, to acclimatize magnesium oversupply.
    Mun HI; Kim YX; Suh DH; Lee S; Singh D; Jung ES; Lee CH; Sung J
    PLoS One; 2020; 15(7):e0236813. PubMed ID: 32726342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative transcriptome sequencing analysis to postulate the scheme of regulated leaf coloration in Perilla frutescens.
    Liu X; Zhai Y; Liu J; Xue J; Markovic T; Wang S; Zhang X
    Plant Mol Biol; 2023 Jun; 112(3):119-142. PubMed ID: 37155022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A highly contiguous genome assembly of red perilla (Perilla frutescens) domesticated in Japan.
    Tamura K; Sakamoto M; Tanizawa Y; Mochizuki T; Matsushita S; Kato Y; Ishikawa T; Okuhara K; Nakamura Y; Bono H
    DNA Res; 2023 Feb; 30(1):. PubMed ID: 36383440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide comprehensive characterization and transcriptomic analysis of AP2/ERF gene family revealed its role in seed oil and ALA formation in perilla (Perilla frutescens).
    Wu D; Zhang K; Li CY; Xie GW; Lu MT; Qian Y; Shu YP; Shen Q
    Gene; 2023 Dec; 889():147808. PubMed ID: 37722611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Cloning and functional characterization of a lysophosphatidic acid acyltransferase gene from
    Zhou Y; Huang X; Hao Y; Cai G; Shi X; Li R; Wang J
    Sheng Wu Gong Cheng Xue Bao; 2022 Aug; 38(8):3014-3028. PubMed ID: 36002428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated Metabolomic and Transcriptomic Analysis Reveals Differential Mechanism of Flavonoid Biosynthesis in Two Cultivars of
    Zhu T; Zhang M; Su H; Li M; Wang Y; Jin L; Li M
    Molecules; 2022 Jan; 27(1):. PubMed ID: 35011537
    [No Abstract]   [Full Text] [Related]  

  • 16. The revealing of a novel double bond reductase related to perilla ketone biosynthesis in Perilla frutescens.
    Zhou P; Shao Y; Jiang Z; Dang J; Qu C; Wu Q
    BMC Plant Biol; 2023 Jun; 23(1):345. PubMed ID: 37391700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolomics and transcriptome analysis of the biosynthesis mechanism of flavonoids in the seeds of Euryale ferox Salisb at different developmental stages.
    Wu P; Liu A; Li L
    Mol Genet Genomics; 2021 Jul; 296(4):953-970. PubMed ID: 34009475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative transcriptome among Euscaphis konishii Hayata tissues and analysis of genes involved in flavonoid biosynthesis and accumulation.
    Liang W; Ni L; Carballar-Lejarazú R; Zou X; Sun W; Wu L; Yuan X; Mao Y; Huang W; Zou S
    BMC Genomics; 2019 Jan; 20(1):24. PubMed ID: 30626333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional identification of oleate 12-desaturase and ω-3 fatty acid desaturase genes from Perilla frutescens var. frutescens.
    Lee KR; Lee Y; Kim EH; Lee SB; Roh KH; Kim JB; Kang HC; Kim HU
    Plant Cell Rep; 2016 Dec; 35(12):2523-2537. PubMed ID: 27637203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated analysis of transcriptomic and metabolomic data reveals critical metabolic pathways involved in rotenoid biosynthesis in the medicinal plant Mirabilis himalaica.
    Gu L; Zhang ZY; Quan H; Li MJ; Zhao FY; Xu YJ; Liu J; Sai M; Zheng WL; Lan XZ
    Mol Genet Genomics; 2018 Jun; 293(3):635-647. PubMed ID: 29285563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.