These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 33005206)

  • 1. Adaptation and constraint shape the evolution of growth patterns in passerine birds across the globe.
    Remeš V; Matysioková B; Vrána J
    Front Zool; 2020; 17():29. PubMed ID: 33005206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development syndromes in New World temperate and tropical songbirds.
    Austin SH; Robinson WD; Robinson TR; Ellis VA; Ricklefs RE
    PLoS One; 2020; 15(8):e0233627. PubMed ID: 32804928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nest predation risk and growth strategies of passerine species: grow fast or develop traits to escape risk?
    Cheng YR; Martin TE
    Am Nat; 2012 Sep; 180(3):285-95. PubMed ID: 22854072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global drivers of variation in cup nest size in passerine birds.
    Vanadzina K; Street SE; Healy SD; Laland KN; Sheard C
    J Anim Ecol; 2023 Feb; 92(2):338-351. PubMed ID: 36134498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early-life patterns of growth are linked to levels of phenotypic trait covariance and postfledging mortality across avian species.
    Merrill L; Jones TM; Brawn JD; Ward MP
    Ecol Evol; 2021 Nov; 11(22):15695-15707. PubMed ID: 34824783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth rate variation among passerine species in tropical and temperate sites: an antagonistic interaction between parental food provisioning and nest predation risk.
    Martin TE; Lloyd P; Bosque C; Barton DC; Biancucci AL; Cheng YR; Ton R
    Evolution; 2011 Jun; 65(6):1607-22. PubMed ID: 21644952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Daily Nest Predation Rates Decrease with Body Size in Passerine Birds.
    Unzeta M; Martin TE; Sol D
    Am Nat; 2020 Dec; 196(6):743-754. PubMed ID: 33211569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pre- to post-fledging carryover effects and the adaptive significance of variation in wing development for juvenile songbirds.
    Jones TM; Ward MP
    J Anim Ecol; 2020 Oct; 89(10):2235-2245. PubMed ID: 32596836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clutch size variation in passerine birds: The nest predation hypothesis.
    Slagsvold T
    Oecologia; 1982 Aug; 54(2):159-169. PubMed ID: 28311424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experiments on clutch size and nest size in passerine birds.
    Slagsvold T
    Oecologia; 1989 Aug; 80(3):297-302. PubMed ID: 28312056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nest predation risk influences a cavity-nesting passerine during the post-hatching care period.
    Yoon J; Kim BS; Joo EJ; Park SR
    Sci Rep; 2016 Aug; 6():31989. PubMed ID: 27553176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elevation and latitude interact to drive life-history variation in precocial birds: a comparative analysis using galliformes.
    Balasubramaniam P; Rotenberry JT
    J Anim Ecol; 2016 Nov; 85(6):1528-1539. PubMed ID: 27392151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nest attendance by tropical and temperate passerine birds: Same constancy, different strategy.
    Austin SH; Robinson WD; Ellis VA; Rodden Robinson T; Ricklefs RE
    Ecol Evol; 2019 Dec; 9(23):13555-13566. PubMed ID: 31871666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors affecting the duration of nestling period and fledging order in Tengmalm's owl (Aegolius funereus): effect of wing length and hatching sequence.
    Kouba M; Bartoš L; Korpimäki E; Zárybnická M
    PLoS One; 2015; 10(3):e0121641. PubMed ID: 25793880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental influences on the evolution of growth and developmental rates in passerines.
    Remes V; Martin TE
    Evolution; 2002 Dec; 56(12):2505-18. PubMed ID: 12583590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of passerine incubation behavior: influence of food, temperature, and nest predation.
    Conway CJ; Martin TE
    Evolution; 2000 Apr; 54(2):670-85. PubMed ID: 10937242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can selection on nest size from nest predation explain the latitudinal gradient in clutch size?
    Biancucci L; Martin TE
    J Anim Ecol; 2010 Sep; 79(5):1086-92. PubMed ID: 20609032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Higher Nest Predation Favors Rapid Fledging at the Cost of Plumage Quality in Nestling Birds.
    Callan LM; La Sorte FA; Martin TE; Rohwer VG
    Am Nat; 2019 May; 193(5):717-724. PubMed ID: 31002573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predators and the breeding bird: behavioral and reproductive flexibility under the risk of predation.
    Lima SL
    Biol Rev Camb Philos Soc; 2009 Aug; 84(3):485-513. PubMed ID: 19659887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diel patterns of predation and fledging at nests of four species of grassland songbirds.
    Ribic CA; Rugg DJ; Ellison K; Koper N; Pietz PJ
    Ecol Evol; 2021 Jun; 11(11):6913-6926. PubMed ID: 34141265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.