These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 33005229)

  • 1. Can CRISPR gene drive work in pest and beneficial haplodiploid species?
    Li J; Aidlin Harari O; Doss AL; Walling LL; Atkinson PW; Morin S; Tabashnik BE
    Evol Appl; 2020 Oct; 13(9):2392-2403. PubMed ID: 33005229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling homing suppression gene drive in haplodiploid organisms.
    Liu Y; Champer J
    Proc Biol Sci; 2022 Apr; 289(1972):20220320. PubMed ID: 35414240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas9-based split homing gene drive targeting
    Yadav AK; Butler C; Yamamoto A; Patil AA; Lloyd AL; Scott MJ
    Proc Natl Acad Sci U S A; 2023 Jun; 120(25):e2301525120. PubMed ID: 37307469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applications of gene drive systems for population suppression of insect pests.
    Asad M; Liu D; Chen J; Yang G
    Bull Entomol Res; 2022 Dec; 112(6):724-733. PubMed ID: 36043456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing the refuge strategy for managing the evolution of insect resistance under different reproductive strategies.
    Crowder DW; Carrière Y
    J Theor Biol; 2009 Dec; 261(3):423-30. PubMed ID: 19703471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Haplodiploidy, sex, and the evolution of pesticide resistance.
    Carrière Y
    J Econ Entomol; 2003 Dec; 96(6):1626-40. PubMed ID: 14977097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The potential for a CRISPR gene drive to eradicate or suppress globally invasive social wasps.
    Lester PJ; Bulgarella M; Baty JW; Dearden PK; Guhlin J; Kean JM
    Sci Rep; 2020 Jul; 10(1):12398. PubMed ID: 32709966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling daisy quorum drive: A short-term bridge across engineered fitness valleys.
    de Haas FJH; Kläy L; Débarre F; Otto SP
    PLoS Genet; 2024 May; 20(5):e1011262. PubMed ID: 38753875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene drive and genetic sex conversion in the global agricultural pest Ceratitis capitata.
    Meccariello A; Hou S; Davydova S; Fawcett JD; Siddall A; Leftwich PT; Krsticevic F; Papathanos PA; Windbichler N
    Nat Commun; 2024 Jan; 15(1):372. PubMed ID: 38191463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling the suppression of a malaria vector using a CRISPR-Cas9 gene drive to reduce female fertility.
    North AR; Burt A; Godfray HCJ
    BMC Biol; 2020 Aug; 18(1):98. PubMed ID: 32782000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A homing suppression gene drive with multiplexed gRNAs maintains high drive conversion efficiency and avoids functional resistance alleles.
    Yang E; Metzloff M; Langmüller AM; Xu X; Clark AG; Messer PW; Champer J
    G3 (Bethesda); 2022 May; 12(6):. PubMed ID: 35394026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reducing resistance allele formation in CRISPR gene drive.
    Champer J; Liu J; Oh SY; Reeves R; Luthra A; Oakes N; Clark AG; Messer PW
    Proc Natl Acad Sci U S A; 2018 May; 115(21):5522-5527. PubMed ID: 29735716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement and use of CRISPR/Cas9 to engineer a sperm-marking strain for the invasive fruit pest Drosophila suzukii.
    Ahmed HMM; Hildebrand L; Wimmer EA
    BMC Biotechnol; 2019 Dec; 19(1):85. PubMed ID: 31805916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel combination of CRISPR-based gene drives eliminates resistance and localises spread.
    Faber NR; McFarlane GR; Gaynor RC; Pocrnic I; Whitelaw CBA; Gorjanc G
    Sci Rep; 2021 Mar; 11(1):3719. PubMed ID: 33664305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Faster-haplodiploid evolution under divergence-with-gene-flow: Simulations and empirical data from pine-feeding hymenopterans.
    Bendall EE; Bagley RK; Sousa VC; Linnen CR
    Mol Ecol; 2022 Apr; 31(8):2348-2366. PubMed ID: 35231148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance analysis of novel toxin-antidote CRISPR gene drive systems.
    Champer J; Kim IK; Champer SE; Clark AG; Messer PW
    BMC Biol; 2020 Mar; 18(1):27. PubMed ID: 32164660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resistance to natural and synthetic gene drive systems.
    Price TAR; Windbichler N; Unckless RL; Sutter A; Runge JN; Ross PA; Pomiankowski A; Nuckolls NL; Montchamp-Moreau C; Mideo N; Martin OY; Manser A; Legros M; Larracuente AM; Holman L; Godwin J; Gemmell N; Courret C; Buchman A; Barrett LG; Lindholm AK
    J Evol Biol; 2020 Oct; 33(10):1345-1360. PubMed ID: 32969551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insect pathogens as biological control agents: Back to the future.
    Lacey LA; Grzywacz D; Shapiro-Ilan DI; Frutos R; Brownbridge M; Goettel MS
    J Invertebr Pathol; 2015 Nov; 132():1-41. PubMed ID: 26225455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conflict between heterozygote advantage and hybrid incompatibility in haplodiploids (and sex chromosomes).
    Ghenu AH; Blanckaert A; Butlin RK; Kulmuni J; Bank C
    Mol Ecol; 2018 Oct; 27(19):3935-3949. PubMed ID: 29328538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene drive systems: do they have a place in agricultural weed management?
    Neve P
    Pest Manag Sci; 2018 Dec; 74(12):2671-2679. PubMed ID: 29999229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.