BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 33005746)

  • 41. Fast, three-dimensional super-resolution imaging of live cells.
    Jones SA; Shim SH; He J; Zhuang X
    Nat Methods; 2011 Jun; 8(6):499-508. PubMed ID: 21552254
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A novel principle for quantitation of fast intracellular calcium changes using Fura-2 and a modified image processing system--applications in studies of neutrophil motility and phagocytosis.
    Gustafson M; Magnusson KE
    Cell Calcium; 1992 Aug; 13(8):473-86. PubMed ID: 1423528
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cryo-Imaging of Fluorescently-Labeled Single Cells in a Mouse.
    Steyer GJ; Roy D; Salvado O; Stone ME; Wilson DL
    Proc SPIE Int Soc Opt Eng; 2009 Jan; 7262():72620W-72620W8. PubMed ID: 19756213
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A dual-view digital tomosynthesis imaging technique for improved chest imaging.
    Zhong Y; Lai CJ; Wang T; Shaw CC
    Med Phys; 2015 Sep; 42(9):5238-51. PubMed ID: 26328973
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Functional expression of the murine connexin 36 gene coding for a neuron-specific gap junctional protein.
    Teubner B; Degen J; Söhl G; Güldenagel M; Bukauskas FF; Trexler EB; Verselis VK; De Zeeuw CI; Lee CG; Kozak CA; Petrasch-Parwez E; Dermietzel R; Willecke K
    J Membr Biol; 2000 Aug; 176(3):249-62. PubMed ID: 10931976
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Super-resolution reconstruction of pneumocystis carinii pneumonia images based on generative confrontation network.
    Shi J; Ye Y; Liu H; Zhu D; Su L; Chen Y; Huang Y; Huang J
    Comput Methods Programs Biomed; 2022 Mar; 215():106578. PubMed ID: 34998168
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The immunocytochemical localization of connexin 36 at rod and cone gap junctions in the guinea pig retina.
    Lee EJ; Han JW; Kim HJ; Kim IB; Lee MY; Oh SJ; Chung JW; Chun MH
    Eur J Neurosci; 2003 Dec; 18(11):2925-34. PubMed ID: 14656288
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Super-Resolution Live Cell Imaging of Subcellular Structures.
    Ranjan R; Chen X
    J Vis Exp; 2021 Jan; (167):. PubMed ID: 33522506
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A super-resolution framework for the reconstruction of T2-weighted (T2w) time-resolved (TR) 4DMRI using T1w TR-4DMRI as the guidance.
    Nie X; Saleh Z; Kadbi M; Zakian K; Deasy J; Rimner A; Li G
    Med Phys; 2020 Jul; 47(7):3091-3102. PubMed ID: 32166757
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhanced super-resolution reconstruction of T1w time-resolved 4DMRI in low-contrast tissue using 2-step hybrid deformable image registration.
    Nie X; Huang K; Deasy J; Rimner A; Li G
    J Appl Clin Med Phys; 2020 Oct; 21(10):25-39. PubMed ID: 32961002
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Simple super-resolution live-cell imaging based on diffusion-assisted Förster resonance energy transfer.
    Cho S; Jang J; Song C; Lee H; Ganesan P; Yoon TY; Kim MW; Choi MC; Ihee H; Heo WD; Park Y
    Sci Rep; 2013; 3():1208. PubMed ID: 23383376
    [TBL] [Abstract][Full Text] [Related]  

  • 52. 3D Registration of pre-surgical prostate MRI and histopathology images via super-resolution volume reconstruction.
    Sood RR; Shao W; Kunder C; Teslovich NC; Wang JB; Soerensen SJC; Madhuripan N; Jawahar A; Brooks JD; Ghanouni P; Fan RE; Sonn GA; Rusu M
    Med Image Anal; 2021 Apr; 69():101957. PubMed ID: 33550008
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fourier interpolation stochastic optical fluctuation imaging.
    Stein SC; Huss A; Hähnel D; Gregor I; Enderlein J
    Opt Express; 2015 Jun; 23(12):16154-63. PubMed ID: 26193588
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ultrasound Microvascular Imaging Based on Super-Resolution Radial Fluctuations.
    Zhang J; Li N; Dong F; Liang S; Wang D; An J; Long Y; Wang Y; Luo Y; Zhang J
    J Ultrasound Med; 2020 Aug; 39(8):1507-1516. PubMed ID: 32064662
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Image reconstructions from super-sampled data sets with resolution modeling in PET imaging.
    Li Y; Matej S; Metzler SD
    Med Phys; 2014 Dec; 41(12):121912. PubMed ID: 25471972
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multi-modal Image Fusion for Multispectral Super-resolution in Microscopy.
    Dey N; Li S; Bermond K; Heintzmann R; Curcio CA; Ach T; Gerig G
    Proc SPIE Int Soc Opt Eng; 2019 Feb; 10949():. PubMed ID: 31777411
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Super-resolution imaging of subcortical white matter using stochastic optical reconstruction microscopy (STORM) and super-resolution optical fluctuation imaging (SOFI).
    Hainsworth AH; Lee S; Foot P; Patel A; Poon WW; Knight AE
    Neuropathol Appl Neurobiol; 2018 Jun; 44(4):417-426. PubMed ID: 28696566
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Registration and Visualization of Correlative Super-Resolution Microscopy Data.
    Reinhard S; Aufmkolk S; Sauer M; Doose S
    Biophys J; 2019 Jun; 116(11):2073-2078. PubMed ID: 31103233
    [TBL] [Abstract][Full Text] [Related]  

  • 59. SIM reconstruction framework for high-speed multi-dimensional super-resolution imaging.
    Zeng H; Liu G; Zhao R
    Opt Express; 2022 Mar; 30(7):10877-10898. PubMed ID: 35473044
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Projections onto Convex Sets Super-Resolution Reconstruction Based on Point Spread Function Estimation of Low-Resolution Remote Sensing Images.
    Fan C; Wu C; Li G; Ma J
    Sensors (Basel); 2017 Feb; 17(2):. PubMed ID: 28208837
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.