BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 33005756)

  • 1. Auto-segmentations by convolutional neural network in cervical and anorectal cancer with clinical structure sets as the ground truth.
    Sartor H; Minarik D; Enqvist O; Ulén J; Wittrup A; Bjurberg M; Trägårdh E
    Clin Transl Radiat Oncol; 2020 Nov; 25():37-45. PubMed ID: 33005756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cascaded deep learning-based auto-segmentation for head and neck cancer patients: Organs at risk on T2-weighted magnetic resonance imaging.
    Korte JC; Hardcastle N; Ng SP; Clark B; Kron T; Jackson P
    Med Phys; 2021 Dec; 48(12):7757-7772. PubMed ID: 34676555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and validation of a deep learning algorithm for auto-delineation of clinical target volume and organs at risk in cervical cancer radiotherapy.
    Liu Z; Liu X; Guan H; Zhen H; Sun Y; Chen Q; Chen Y; Wang S; Qiu J
    Radiother Oncol; 2020 Dec; 153():172-179. PubMed ID: 33039424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks.
    Men K; Dai J; Li Y
    Med Phys; 2017 Dec; 44(12):6377-6389. PubMed ID: 28963779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of methods for fully automatic segmentation of tumors and involved nodes in PET/CT of head and neck cancers.
    Groendahl AR; Skjei Knudtsen I; Huynh BN; Mulstad M; Moe YM; Knuth F; Tomic O; Indahl UG; Torheim T; Dale E; Malinen E; Futsaether CM
    Phys Med Biol; 2021 Mar; 66(6):065012. PubMed ID: 33666176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Male pelvic multi-organ segmentation using token-based transformer Vnet.
    Pan S; Lei Y; Wang T; Wynne J; Chang CW; Roper J; Jani AB; Patel P; Bradley JD; Liu T; Yang X
    Phys Med Biol; 2022 Oct; 67(20):. PubMed ID: 36170872
    [No Abstract]   [Full Text] [Related]  

  • 7. Deep learning-based auto-delineation of gross tumour volumes and involved nodes in PET/CT images of head and neck cancer patients.
    Moe YM; Groendahl AR; Tomic O; Dale E; Malinen E; Futsaether CM
    Eur J Nucl Med Mol Imaging; 2021 Aug; 48(9):2782-2792. PubMed ID: 33559711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volumetric Pancreas Segmentation on Computed Tomography: Accuracy and Efficiency of a Convolutional Neural Network Versus Manual Segmentation in 3D Slicer in the Context of Interreader Variability of Expert Radiologists.
    Khasawneh H; Patra A; Rajamohan N; Suman G; Klug J; Majumder S; Chari ST; Korfiatis P; Goenka AH
    J Comput Assist Tomogr; 2022 Nov-Dec 01; 46(6):841-847. PubMed ID: 36055122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Convolutional neural network-based automatic liver delineation on contrast-enhanced and non-contrast-enhanced CT images for radiotherapy planning.
    Sakashita N; Shirai K; Ueda Y; Ono A; Teshima T
    Rep Pract Oncol Radiother; 2020; 25(6):981-986. PubMed ID: 33100915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Segmentation of organs-at-risk in cervical cancer CT images with a convolutional neural network.
    Liu Z; Liu X; Xiao B; Wang S; Miao Z; Sun Y; Zhang F
    Phys Med; 2020 Jan; 69():184-191. PubMed ID: 31918371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pelvic U-Net: multi-label semantic segmentation of pelvic organs at risk for radiation therapy anal cancer patients using a deeply supervised shuffle attention convolutional neural network.
    Lempart M; Nilsson MP; Scherman J; Gustafsson CJ; Nilsson M; Alkner S; Engleson J; Adrian G; Munck Af Rosenschöld P; Olsson LE
    Radiat Oncol; 2022 Jun; 17(1):114. PubMed ID: 35765038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic contouring system for cervical cancer using convolutional neural networks.
    Rhee DJ; Jhingran A; Rigaud B; Netherton T; Cardenas CE; Zhang L; Vedam S; Kry S; Brock KK; Shaw W; O'Reilly F; Parkes J; Burger H; Fakie N; Trauernicht C; Simonds H; Court LE
    Med Phys; 2020 Nov; 47(11):5648-5658. PubMed ID: 32964477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison between atlas and convolutional neural network based automatic segmentation of multiple organs at risk in non-small cell lung cancer.
    Zhang T; Yang Y; Wang J; Men K; Wang X; Deng L; Bi N
    Medicine (Baltimore); 2020 Aug; 99(34):e21800. PubMed ID: 32846816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Whole liver segmentation based on deep learning and manual adjustment for clinical use in SIRT.
    Tang X; Jafargholi Rangraz E; Coudyzer W; Bertels J; Robben D; Schramm G; Deckers W; Maleux G; Baete K; Verslype C; Gooding MJ; Deroose CM; Nuyts J
    Eur J Nucl Med Mol Imaging; 2020 Nov; 47(12):2742-2752. PubMed ID: 32314026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning-based auto-segmentation of clinical target volumes for radiotherapy treatment of cervical cancer.
    Ma CY; Zhou JY; Xu XT; Guo J; Han MF; Gao YZ; Du H; Stahl JN; Maltz JS
    J Appl Clin Med Phys; 2022 Feb; 23(2):e13470. PubMed ID: 34807501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic segmentation and applicator reconstruction for CT-based brachytherapy of cervical cancer using 3D convolutional neural networks.
    Zhang D; Yang Z; Jiang S; Zhou Z; Meng M; Wang W
    J Appl Clin Med Phys; 2020 Oct; 21(10):158-169. PubMed ID: 32991783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Auto-delineation of oropharyngeal clinical target volumes using 3D convolutional neural networks.
    Cardenas CE; Anderson BM; Aristophanous M; Yang J; Rhee DJ; McCarroll RE; Mohamed ASR; Kamal M; Elgohari BA; Elhalawani HM; Fuller CD; Rao A; Garden AS; Court LE
    Phys Med Biol; 2018 Nov; 63(21):215026. PubMed ID: 30403188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of auto-segmentation accuracy of cloud-based artificial intelligence and atlas-based models.
    Urago Y; Okamoto H; Kaneda T; Murakami N; Kashihara T; Takemori M; Nakayama H; Iijima K; Chiba T; Kuwahara J; Katsuta S; Nakamura S; Chang W; Saitoh H; Igaki H
    Radiat Oncol; 2021 Sep; 16(1):175. PubMed ID: 34503533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning from dual-energy information for whole-heart segmentation in dual-energy and single-energy non-contrast-enhanced cardiac CT.
    Bruns S; Wolterink JM; Takx RAP; van Hamersvelt RW; Suchá D; Viergever MA; Leiner T; Išgum I
    Med Phys; 2020 Oct; 47(10):5048-5060. PubMed ID: 32786071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical evaluation on automatic segmentation results of convolutional neural networks in rectal cancer radiotherapy.
    Li J; Song Y; Wu Y; Liang L; Li G; Bai S
    Front Oncol; 2023; 13():1158315. PubMed ID: 37731629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.