These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 33006178)

  • 1. Piezoelectric Energy Harvesting Design Principles for Materials and Structures: Material Figure-of-Merit and Self-Resonance Tuning.
    Song HC; Kim SW; Kim HS; Lee DG; Kang CY; Nahm S
    Adv Mater; 2020 Dec; 32(51):e2002208. PubMed ID: 33006178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact-Driven Energy Harvesting: Piezoelectric Versus Triboelectric Energy Harvesters.
    Thainiramit P; Yingyong P; Isarakorn D
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33076291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Broadband Piezoelectric Energy Harvester Based on Coupling Resonance Frequency Tuning.
    Hu K; Wang M
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Comparison Study of Fatigue Behavior of Hard and Soft Piezoelectric Single Crystal Macro-Fiber Composites for Vibration Energy Harvesting.
    Peddigari M; Kim GY; Park CH; Min Y; Kim JW; Ahn CW; Choi JJ; Hahn BD; Choi JH; Park DS; Hong JK; Yeom JT; Park KI; Jeong DY; Yoon WH; Ryu J; Hwang GT
    Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31085985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of piezoelectric material properties for a higher power output from energy harvesters with insight into material selection using a coupled piezoelectric-circuit-finite element method.
    Daniels A; Zhu M; Tiwari A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Dec; 60(12):2626-33. PubMed ID: 24284255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical Analysis of Signal Response Characteristic of Piezoelectric Energy Harvesters Embedded in Pavement.
    Yang H; Zhao Q; Guo X; Zhang W; Liu P; Wang L
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32570889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy harvesting performance of piezoelectric ceramic and polymer nanowires.
    Crossley S; Kar-Narayan S
    Nanotechnology; 2015 Aug; 26(34):344001. PubMed ID: 26234477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Piezoelectric energy harvesting systems using mechanical tuning techniques.
    Liu X; He L; Liu R; Hu D; Zhang L; Cheng G
    Rev Sci Instrum; 2023 Mar; 94(3):031501. PubMed ID: 37012740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite Element Modeling and Performance Evaluation of Piezoelectric Energy Harvesters with Various Piezoelectric Unit Distributions.
    Du C; Liu P; Yang H; Jiang G; Wang L; Oeser M
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33799375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Printing-Enabled In-Situ Orientation of BaTi
    Liu X; Shang Y; Liu J; Shao Z; Zhang C
    ACS Appl Mater Interfaces; 2022 Mar; 14(11):13361-13368. PubMed ID: 35266704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling, Validation, and Performance of Two Tandem Cylinder Piezoelectric Energy Harvesters in Water Flow.
    Song R; Hou C; Yang C; Yang X; Guo Q; Shan X
    Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and Development of a Lead-Freepiezoelectric Energy Harvester for Wideband, Low Frequency, and Low Amplitude Vibrations.
    Kumari N; Rakotondrabe M
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Review of Piezoelectric Footwear Energy Harvesters: Principles, Methods, and Applications.
    Zhao B; Qian F; Hatfield A; Zuo L; Xu TB
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Review of Piezoelectric Vibration Energy Harvesting with Magnetic Coupling Based on Different Structural Characteristics.
    Jiang J; Liu S; Feng L; Zhao D
    Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33919932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of Output Performance of a Novel Symmetrical T-Shaped Trapezoidal Micro Piezoelectric Energy Harvester Using a PZT-5H.
    Xu W; Ao H; Zhou N; Song Z; Jiang H
    Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance.
    Wang P; Du H
    Rev Sci Instrum; 2015 Jul; 86(7):075002. PubMed ID: 26233403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of Piezoelectric Energy Harvester System through Optimizing Multiple Structural Parameters.
    Yang H; Wei Y; Zhang W; Ai Y; Ye Z; Wang L
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33923926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical Energy Sensing and Harvesting in Micromachined Polymer-Based Piezoelectric Transducers for Fully Implanted Hearing Systems: A Review.
    Latif R; Noor MM; Yunas J; Hamzah AA
    Polymers (Basel); 2021 Jul; 13(14):. PubMed ID: 34301034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topology Optimization of Piezoelectric Energy Harvesters for Enhanced Open-Circuit Voltage Subjected to Harmonic Excitations.
    He M; He M; Zhang X; Xia L
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiscale Heterogeneity Strategy in Piezoceramics for Enhanced Energy Harvesting Performances.
    Yu X; Hou Y; Zheng M; Zhu M
    ACS Appl Mater Interfaces; 2021 Apr; 13(15):17800-17808. PubMed ID: 33826294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.