BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1113 related articles for article (PubMed ID: 33006204)

  • 1. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing.
    Choi S; Yang J; Wang G
    Adv Mater; 2020 Dec; 32(51):e2004659. PubMed ID: 33006204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Memristors Based on 2D Materials as an Artificial Synapse for Neuromorphic Electronics.
    Huh W; Lee D; Lee CH
    Adv Mater; 2020 Dec; 32(51):e2002092. PubMed ID: 32985042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial Neuron and Synapse Devices Based on 2D Materials.
    Lee G; Baek JH; Ren F; Pearton SJ; Lee GH; Kim J
    Small; 2021 May; 17(20):e2100640. PubMed ID: 33817985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible Neuromorphic Electronics for Computing, Soft Robotics, and Neuroprosthetics.
    Park HL; Lee Y; Kim N; Seo DG; Go GT; Lee TW
    Adv Mater; 2020 Apr; 32(15):e1903558. PubMed ID: 31559670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimuli-Responsive Memristive Materials for Artificial Synapses and Neuromorphic Computing.
    Bian H; Goh YY; Liu Y; Ling H; Xie L; Liu X
    Adv Mater; 2021 Nov; 33(46):e2006469. PubMed ID: 33837601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emerging memristive neurons for neuromorphic computing and sensing.
    Li Z; Tang W; Zhang B; Yang R; Miao X
    Sci Technol Adv Mater; 2023; 24(1):2188878. PubMed ID: 37090846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thousands of conductance levels in memristors integrated on CMOS.
    Rao M; Tang H; Wu J; Song W; Zhang M; Yin W; Zhuo Y; Kiani F; Chen B; Jiang X; Liu H; Chen HY; Midya R; Ye F; Jiang H; Wang Z; Wu M; Hu M; Wang H; Xia Q; Ge N; Li J; Yang JJ
    Nature; 2023 Mar; 615(7954):823-829. PubMed ID: 36991190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bipolar Analog Memristors as Artificial Synapses for Neuromorphic Computing.
    Wang R; Shi T; Zhang X; Wang W; Wei J; Lu J; Zhao X; Wu Z; Cao R; Long S; Liu Q; Liu M
    Materials (Basel); 2018 Oct; 11(11):. PubMed ID: 30373122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Training and operation of an integrated neuromorphic network based on metal-oxide memristors.
    Prezioso M; Merrikh-Bayat F; Hoskins BD; Adam GC; Likharev KK; Strukov DB
    Nature; 2015 May; 521(7550):61-4. PubMed ID: 25951284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MoS
    Li D; Wu B; Zhu X; Wang J; Ryu B; Lu WD; Lu W; Liang X
    ACS Nano; 2018 Sep; 12(9):9240-9252. PubMed ID: 30192507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid oxide brain-inspired neuromorphic devices for hardware implementation of artificial intelligence.
    Wang J; Zhuge X; Zhuge F
    Sci Technol Adv Mater; 2021 May; 22(1):326-344. PubMed ID: 34025215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Memristors for Neuromorphic Circuits and Artificial Intelligence Applications.
    Miranda E; Suñé J
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32093164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bridging Biological and Artificial Neural Networks with Emerging Neuromorphic Devices: Fundamentals, Progress, and Challenges.
    Tang J; Yuan F; Shen X; Wang Z; Rao M; He Y; Sun Y; Li X; Zhang W; Li Y; Gao B; Qian H; Bi G; Song S; Yang JJ; Wu H
    Adv Mater; 2019 Dec; 31(49):e1902761. PubMed ID: 31550405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organic iontronic memristors for artificial synapses and bionic neuromorphic computing.
    Xia Y; Zhang C; Xu Z; Lu S; Cheng X; Wei S; Yuan J; Sun Y; Li Y
    Nanoscale; 2024 Jan; 16(4):1471-1489. PubMed ID: 38180037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning to Approximate Functions Using Nb-Doped SrTiO
    Tiotto TF; Goossens AS; Borst JP; Banerjee T; Taatgen NA
    Front Neurosci; 2020; 14():627276. PubMed ID: 33679290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Memristors based on 2D MoSe
    Duan H; Wang D; Gou J; Guo F; Jie W; Hao J
    Nanoscale; 2023 Jun; 15(23):10089-10096. PubMed ID: 37249372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synapse-Mimetic Hardware-Implemented Resistive Random-Access Memory for Artificial Neural Network.
    Seok H; Son S; Jathar SB; Lee J; Kim T
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymer Analog Memristive Synapse with Atomic-Scale Conductive Filament for Flexible Neuromorphic Computing System.
    Jang BC; Kim S; Yang SY; Park J; Cha JH; Oh J; Choi J; Im SG; Dravid VP; Choi SY
    Nano Lett; 2019 Feb; 19(2):839-849. PubMed ID: 30608706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing.
    Park SO; Jeong H; Park J; Bae J; Choi S
    Nat Commun; 2022 Jun; 13(1):2888. PubMed ID: 35660724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamical memristive neural networks and associative self-learning architectures using biomimetic devices.
    Zivasatienraj B; Doolittle WA
    Front Neurosci; 2023; 17():1153183. PubMed ID: 37152603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 56.