These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 33006403)

  • 1. Activity and Stability Boosting of an Oxygen-Vacancy-Rich BiVO
    Pan JB; Wang BH; Wang JB; Ding HZ; Zhou W; Liu X; Zhang JR; Shen S; Guo JK; Chen L; Au CT; Jiang LL; Yin SF
    Angew Chem Int Ed Engl; 2021 Jan; 60(3):1433-1440. PubMed ID: 33006403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NiFe-bimetal-organic framework grafting oxygen-vacancy-rich BiVO
    Yang Y; Wan S; Wang R; Ou M; Fan X; Zhong Q
    J Colloid Interface Sci; 2023 Jan; 629(Pt A):487-495. PubMed ID: 36088694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafast Deposition of NiFe Metal-organic Framework Catalysts Boosts BiVO
    Yuan C; Gao RT; Wang L
    Chem Asian J; 2023 Jun; 18(12):e202300197. PubMed ID: 37032632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Boosting the Performance of BiVO
    Sun Q; Ren K; Qi L
    ACS Appl Mater Interfaces; 2022 Aug; 14(33):37833-37842. PubMed ID: 35957577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A high-performance silicon photoanode enabled by oxygen vacancy modulation on NiOOH electrocatalyst for water oxidation.
    Cai Q; Hong W; Jian C; Liu W
    Nanoscale; 2020 Apr; 12(14):7550-7556. PubMed ID: 32227016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Boosting photoelectrochemical activity of bismuth vanadate by implanting oxygen-vacancy-rich cobalt (oxy)hydroxide.
    Sun H; Hua W; Liang S; Li Y; Wang JG
    J Colloid Interface Sci; 2022 Apr; 611():278-286. PubMed ID: 34953460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Promoting the Photoelectrochemical Properties of BiVO
    Dong G; Chen T; Kou F; Xie F; Xiao C; Liang J; Lou C; Zhuang J; Du S
    Nanomaterials (Basel); 2024 Jun; 14(13):. PubMed ID: 38998705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NiFe MOF modified BiVO
    Xie W; Wang M; Huang H; Yu Z; Jiang R; Yao S; Huang J; Hou Y; Fan B
    J Colloid Interface Sci; 2024 Jan; 654(Pt B):1492-1503. PubMed ID: 37923693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-performance BiVO
    Jiang L; Qin Q; Wang Y; Su Y; Xia L; Lin S; Yao W; Wu Q; Min Y; Xu Q
    J Colloid Interface Sci; 2022 Aug; 619():257-266. PubMed ID: 35397459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suppressing photoinduced charge recombination at the BiVO
    Peng Y; Du M; Zou X; Jia G; Permatasari Santoso S; Peng X; Niu W; Yuan M; Hsu HY
    J Colloid Interface Sci; 2022 Feb; 608(Pt 2):1116-1125. PubMed ID: 34749133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen Vacancy-Enhanced Photoelectrochemical Water Splitting of WO
    Lin W; Yu Y; Fang Y; Liu J; Li X; Wang J; Zhang Y; Wang C; Wang L; Yu X
    Langmuir; 2021 Jun; 37(21):6490-6497. PubMed ID: 34009993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual modification of BiVO
    Yang L; Wang R; Zhou N; Liang D; Chu D; Deng C; Yu H; Lv J
    J Colloid Interface Sci; 2023 Feb; 631(Pt A):35-45. PubMed ID: 36368214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-performance bismuth vanadate photoanodes cocatalyzed with nitrogen, sulphur co-doped ferrocobalt-metal organic frameworks thin layer for photoelectrochemical water splitting.
    Xia L; Cheng X; Jiang L; Min Y; Yao W; Wu Q; Xu Q
    J Colloid Interface Sci; 2024 Apr; 659():676-686. PubMed ID: 38211485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of Oxygen-Vacancy-Rich NiFe-Layered Double Hydroxide onto Silicon as Photoanode for Enhanced Photoelectrochemical Water Oxidation.
    Chen C; Lu Y; Fan R; Shen M
    ChemSusChem; 2020 Aug; 13(15):3893-3900. PubMed ID: 32400054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid Synthesis of Ultrathin Ni:FeOOH with In Situ-Induced Oxygen Vacancies for Enhanced Water Oxidation Activity and Stability of BiVO
    Gaikwad MA; Ghorpade UV; Suryawanshi UP; Kumar PV; Jang S; Jang JS; Tran L; Lee JS; Bae H; Shin SW; Suryawanshi MP; Kim JH
    ACS Appl Mater Interfaces; 2023 May; 15(17):21123-21133. PubMed ID: 37083398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. WO
    Ma Z; Song K; Wang L; Gao F; Tang B; Hou H; Yang W
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):889-897. PubMed ID: 30560657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A high-activity bimetallic OER cocatalyst for efficient photoelectrochemical water splitting of BiVO
    Hu R; Meng L; Zhang J; Wang X; Wu S; Wu Z; Zhou R; Li L; Li DS; Wu T
    Nanoscale; 2020 Apr; 12(16):8875-8882. PubMed ID: 32259173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A BiVO
    Liu B; Wang X; Zhang Y; Xu L; Wang T; Xiao X; Wang S; Wang L; Huang W
    Angew Chem Int Ed Engl; 2023 Mar; 62(10):e202217346. PubMed ID: 36642699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elucidating the Role of Hypophosphite Treatment in Enhancing the Performance of BiVO
    Wang Q; Wu L; Zhang Z; Cheng J; Chen R; Liu Y; Luo J
    ACS Appl Mater Interfaces; 2022 May; ():. PubMed ID: 35640048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Photoelectrochemical Water Oxidation Performance on BiVO
    Du J; Zhong X; He H; Huang J; Yang M; Ke G; Wang J; Zhou Y; Dong F; Ren Q; Bian L
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42207-42216. PubMed ID: 30422621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.