These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Phenylene-Bridged Bispyridinium with High Capacity and Stability for Aqueous Flow Batteries. Hu S; Li T; Huang M; Huang J; Li W; Wang L; Chen Z; Fu Z; Li X; Liang Z Adv Mater; 2021 Feb; 33(7):e2005839. PubMed ID: 33448063 [TBL] [Abstract][Full Text] [Related]
43. POM Anolyte for All-Anion Redox Flow Batteries with High Capacity Retention and Coulombic Efficiency at Mild pH. Yang L; Hao Y; Lin J; Li K; Luo S; Lei J; Han Y; Yuan R; Liu G; Ren B; Chen J Adv Mater; 2022 Feb; 34(7):e2107425. PubMed ID: 34866255 [TBL] [Abstract][Full Text] [Related]
44. Functioning Water-Insoluble Ferrocenes for Aqueous Organic Flow Battery via Host-Guest Inclusion. Li Y; Xu Z; Liu Y; Jin S; Fell EM; Wang B; Gordon RG; Aziz MJ; Yang Z; Xu T ChemSusChem; 2021 Jan; 14(2):745-752. PubMed ID: 33295127 [TBL] [Abstract][Full Text] [Related]
45. Phosphonate-based iron complex for a cost-effective and long cycling aqueous iron redox flow battery. Nambafu GS; Hollas AM; Zhang S; Rice PS; Boglaienko D; Fulton JL; Li M; Huang Q; Zhu Y; Reed DM; Sprenkle VL; Li G Nat Commun; 2024 Mar; 15(1):2566. PubMed ID: 38528014 [TBL] [Abstract][Full Text] [Related]
46. Fluorination Enables Simultaneous Improvements of a Dialkoxybenzene-Based Redoxmer for Nonaqueous Redox Flow Batteries. Bheemireddy SR; Li Z; Zhang J; Agarwal G; Robertson LA; Shkrob IA; Assary RS; Zhang Z; Wei X; Cheng L; Zhang L ACS Appl Mater Interfaces; 2022 Jun; 14(25):28834-28841. PubMed ID: 35709493 [TBL] [Abstract][Full Text] [Related]
47. Electrochemical implications of modulating the solvation shell around redox active organic species in aqueous organic redox flow batteries. Sharma K; Sankarasubramanian S; Parrondo J; Ramani V Proc Natl Acad Sci U S A; 2021 Aug; 118(34):. PubMed ID: 34417296 [TBL] [Abstract][Full Text] [Related]
48. The lightest organic radical cation for charge storage in redox flow batteries. Huang J; Pan B; Duan W; Wei X; Assary RS; Su L; Brushett FR; Cheng L; Liao C; Ferrandon MS; Wang W; Zhang Z; Burrell AK; Curtiss LA; Shkrob IA; Moore JS; Zhang L Sci Rep; 2016 Aug; 6():32102. PubMed ID: 27558638 [TBL] [Abstract][Full Text] [Related]
49. Blatter Radicals as Bipolar Materials for Symmetrical Redox-Flow Batteries. Steen JS; Nuismer JL; Eiva V; Wiglema AET; Daub N; Hjelm J; Otten E J Am Chem Soc; 2022 Mar; 144(11):5051-5058. PubMed ID: 35258956 [TBL] [Abstract][Full Text] [Related]
51. Development of Modular Nitrenium Bipolar Electrolytes for Possible Applications in Symmetric Redox Flow Batteries. Varenikov A; Gandelman M; Sigman MS J Am Chem Soc; 2024 Jul; 146(28):19474-19488. PubMed ID: 38963077 [TBL] [Abstract][Full Text] [Related]
52. Stable Operation of Aqueous Organic Redox Flow Batteries in Air Atmosphere. Kong T; Liu J; Zhou X; Xu J; Xie Y; Chen J; Li X; Wang Y Angew Chem Int Ed Engl; 2023 Feb; 62(6):e202214819. PubMed ID: 36495124 [TBL] [Abstract][Full Text] [Related]
53. Ferrocene and cobaltocene derivatives for non-aqueous redox flow batteries. Hwang B; Park MS; Kim K ChemSusChem; 2015 Jan; 8(2):310-4. PubMed ID: 25428116 [TBL] [Abstract][Full Text] [Related]
54. A Systematic Study on the Redox Potentials of Phenazine-Derivatives in Aqueous Media: A Combined Computational and Experimental Work. de la Cruz C; Sanz R; Suárez A; Ventosa E; Marcilla R; Mavrandonakis A ChemSusChem; 2023 Apr; 16(8):e202201984. PubMed ID: 36753400 [TBL] [Abstract][Full Text] [Related]
56. Enabling Long-Life Aqueous Organic Redox Flow Batteries with a Highly Stable, Low Redox Potential Phenazine Anolyte. Kong T; Li J; Wang W; Zhou X; Xie Y; Ma J; Li X; Wang Y ACS Appl Mater Interfaces; 2024 Jan; 16(1):752-760. PubMed ID: 38132704 [TBL] [Abstract][Full Text] [Related]
57. Radical Charge Population and Energy: Critical Role in Redox Potential and Cycling Life of Piperidine Nitroxyl Radical Cathodes in Aqueous Zinc Hybrid Flow Batteries. Fan H; Zhang J; Ravivarma M; Li H; Hu B; Lei J; Feng Y; Xiong S; He C; Gong J; Gao T; Song J ACS Appl Mater Interfaces; 2020 Sep; 12(39):43568-43575. PubMed ID: 32856898 [TBL] [Abstract][Full Text] [Related]
58. Integration of Functional Groups to Enhance the Solubility and Stability of Viologen in Aqueous Organic Redox Flow Batteries. Hwang S; Oh M; Lee KJ; Jin CS; Park SK; Seo C; Yeon SH; Kim DH; Gueon D; Han YK; Shin KH ACS Appl Mater Interfaces; 2024 Jun; 16(22):28645-28654. PubMed ID: 38787734 [TBL] [Abstract][Full Text] [Related]
59. Grafting and Solubilization of Redox-Active Organic Materials for Aqueous Redox Flow Batteries. Chen R; Zhang P; Chang Z; Yan J; Kraus T ChemSusChem; 2023 Apr; 16(8):e202201993. PubMed ID: 36625759 [TBL] [Abstract][Full Text] [Related]
60. Benzidine Derivatives as Electroactive Materials for Aqueous Organic Redox Flow Batteries. Flores-Leonar MM; Acosta-Tejada G; Laguna HG; Amador-Bedolla C; Sánchez-Castellanos M; Ugalde-Saldívar VM ACS Omega; 2023 Sep; 8(36):32432-32443. PubMed ID: 37720753 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]