These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 33006474)

  • 61. Highly Soluble Imidazolium Ferrocene Bis(sulfonate) Salts for Redox Flow Battery Applications.
    Schrage BR; Zhang B; Petrochko SC; Zhao Z; Frkonja-Kuczin A; Boika A; Ziegler CJ
    Inorg Chem; 2021 Jul; 60(14):10764-10771. PubMed ID: 34210136
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A pH-Neutral, Metal-Free Aqueous Organic Redox Flow Battery Employing an Ammonium Anthraquinone Anolyte.
    Hu B; Luo J; Hu M; Yuan B; Liu TL
    Angew Chem Int Ed Engl; 2019 Nov; 58(46):16629-16636. PubMed ID: 31381221
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Single-Molecule Redox-Targeting Reactions for a pH-Neutral Aqueous Organic Redox Flow Battery.
    Zhou M; Chen Y; Salla M; Zhang H; Wang X; Mothe SR; Wang Q
    Angew Chem Int Ed Engl; 2020 Aug; 59(34):14286-14291. PubMed ID: 32510721
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Designing Alkylammonium Cations for Enhanced Solubility of Anionic Active Materials in Redox Flow Batteries: The Role of Bulk and Chain Length.
    Mayes ML; Visayas BR; Pahari S; Poudel T; Golen J; Cappillino P
    Chemphyschem; 2024 Oct; ():e202400517. PubMed ID: 39384534
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Stable Bifunctional Perylene Imide Radicals for High-Performance Organic-Lithium Redox-Flow Batteries.
    Li L; Gong HX; Chen DY; Lin MJ
    Chemistry; 2018 Sep; 24(50):13188-13196. PubMed ID: 29923233
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Viologen/Bromide Dual-Redox Electrochemical Capacitor with Two-Electron Reduction of Viologen.
    Luo H; Wang G; Lu J; Zhuang L; Xiao L
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41215-41221. PubMed ID: 31609584
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The Dual Role of Bridging Phenylene in an Extended Bipyridine System for High-Voltage and Stable Two-Electron Storage in Redox Flow Batteries.
    Pan M; Lu Y; Lu S; Yu B; Wei J; Liu Y; Jin Z
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):44174-44183. PubMed ID: 34496562
    [TBL] [Abstract][Full Text] [Related]  

  • 68. High-Capacity CuSi
    Zhang X; Li W; Chen H
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40552-40561. PubMed ID: 34423636
    [TBL] [Abstract][Full Text] [Related]  

  • 69. An organic super-electron-donor as a high energy density negative electrolyte for nonaqueous flow batteries.
    Vaid TP; Sanford MS
    Chem Commun (Camb); 2019 Sep; 55(74):11037-11040. PubMed ID: 31453609
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Molecular Engineering of Azobenzene-Based Anolytes Towards High-Capacity Aqueous Redox Flow Batteries.
    Zu X; Zhang L; Qian Y; Zhang C; Yu G
    Angew Chem Int Ed Engl; 2020 Dec; 59(49):22163-22170. PubMed ID: 32841494
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Fundamentally Addressing Bromine Storage through Reversible Solid-State Confinement in Porous Carbon Electrodes: Design of a High-Performance Dual-Redox Electrochemical Capacitor.
    Yoo SJ; Evanko B; Wang X; Romelczyk M; Taylor A; Ji X; Boettcher SW; Stucky GD
    J Am Chem Soc; 2017 Jul; 139(29):9985-9993. PubMed ID: 28696675
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A class of polysulfide catholytes for lithium-sulfur batteries: energy density, cyclability, and voltage enhancement.
    Yu X; Manthiram A
    Phys Chem Chem Phys; 2015 Jan; 17(3):2127-36. PubMed ID: 25484001
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Biomimetic Amino Acid Functionalized Phenazine Flow Batteries with Long Lifetime at Near-Neutral pH.
    Pang S; Wang X; Wang P; Ji Y
    Angew Chem Int Ed Engl; 2021 Mar; 60(10):5289-5298. PubMed ID: 33247882
    [TBL] [Abstract][Full Text] [Related]  

  • 74. In situ X-ray near-edge absorption spectroscopy investigation of the state of charge of all-vanadium redox flow batteries.
    Jia C; Liu Q; Sun CJ; Yang F; Ren Y; Heald SM; Liu Y; Li ZF; Lu W; Xie J
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17920-5. PubMed ID: 25191695
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Room Temperature, Hybrid Sodium-Based Flow Batteries with Multi-Electron Transfer Redox Reactions.
    Shamie JS; Liu C; Shaw LL; Sprenkle VL
    Sci Rep; 2015 Jun; 5():11215. PubMed ID: 26063629
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Exploring the Landscape of Heterocyclic Quinones for Redox Flow Batteries.
    Jethwa RB; Hey D; Kerber RN; Bond AD; Wright DS; Grey CP
    ACS Appl Energy Mater; 2024 Jan; 7(2):414-426. PubMed ID: 38273966
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Designing Robust Two-Electron Storage Extended Bipyridinium Anolytes for pH-Neutral Aqueous Organic Redox Flow Batteries.
    Tang G; Liu Y; Li Y; Peng K; Zuo P; Yang Z; Xu T
    JACS Au; 2022 May; 2(5):1214-1222. PubMed ID: 35647585
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Mellitic Triimides Showing Three One-Electron Redox Reactions with Increased Redox Potential as New Electrode Materials for Li-Ion Batteries.
    Min DJ; Lee K; Park SY; Kwon JE
    ChemSusChem; 2020 May; 13(9):2303-2311. PubMed ID: 32109008
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Viologen Derivatives Extended with Aromatic Rings Acting as Negative Electrode Materials for Use in Rechargeable Molecular Ion Batteries.
    Kato M; Sano H; Kiyobayashi T; Yao M
    ChemSusChem; 2020 May; 13(9):2379-2385. PubMed ID: 32037681
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Bidentate nitroxide ligands stable toward oxidative redox cycling and their complexes with cerium and lanthanum.
    Kim JE; Carroll PJ; Schelter EJ
    Chem Commun (Camb); 2015 Oct; 51(81):15047-50. PubMed ID: 26317133
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.