These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 33007055)

  • 1. Synthesis of Weinreb amides using diboronic acid anhydride-catalyzed dehydrative amidation of carboxylic acids.
    Shimada N; Takahashi N; Ohse N; Koshizuka M; Makino K
    Chem Commun (Camb); 2020 Nov; 56(86):13145-13148. PubMed ID: 33007055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diboronic Acid Anhydrides as Effective Catalysts for the Hydroxy-Directed Dehydrative Amidation of Carboxylic Acids.
    Shimada N; Hirata M; Koshizuka M; Ohse N; Kaito R; Makino K
    Org Lett; 2019 Jun; 21(11):4303-4308. PubMed ID: 31120259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic dehydrative amide bond formation using aqueous ammonia: synthesis of primary amides utilizing diboronic acid anhydride catalysis.
    Takahashi N; Iwasawa H; Kinashi T; Makino K; Shimada N
    Chem Commun (Camb); 2023 Jun; 59(48):7391-7394. PubMed ID: 37232102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diboronic Acid Anhydride-Catalyzed Direct Peptide Bond Formation Enabled by Hydroxy-Directed Dehydrative Condensation.
    Koshizuka M; Makino K; Shimada N
    Org Lett; 2020 Nov; 22(21):8658-8664. PubMed ID: 33044828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ortho-substituent on 2,4-bis(trifluoromethyl)phenylboronic acid catalyzed dehydrative condensation between carboxylic acids and amines.
    Wang K; Lu Y; Ishihara K
    Chem Commun (Camb); 2018 May; 54(43):5410-5413. PubMed ID: 29714375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enantioselective Synthesis of syn-α-Aryl-β-hydroxy Weinreb Amides: Catalytic Asymmetric Roskamp Reaction of α-Aryl Diazo Weinreb Amides.
    Shin SH; Baek EH; Hwang GS; Ryu DH
    Org Lett; 2015 Oct; 17(19):4746-9. PubMed ID: 26393875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diboron-Catalyzed Dehydrative Amidation of Aromatic Carboxylic Acids with Amines.
    Sawant DN; Bagal DB; Ogawa S; Selvam K; Saito S
    Org Lett; 2018 Aug; 20(15):4397-4400. PubMed ID: 30020789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterocyclic Boron Acid Catalyzed Dehydrative Amidation of Aliphatic/Aromatic Carboxylic Acids with Amines.
    Pan B; Huang DM; Sun HT; Song SN; Su XB
    J Org Chem; 2023 Mar; 88(5):2832-2840. PubMed ID: 36791405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydroxy-Directed Amidation of Carboxylic Acid Esters Using a Tantalum Alkoxide Catalyst.
    Tsuji H; Yamamoto H
    J Am Chem Soc; 2016 Nov; 138(43):14218-14221. PubMed ID: 27744684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iridium-Catalyzed C-H Amination of Weinreb Amides: A Facile Pathway toward Anilines and Quinazolin-2,4-diones.
    Dong X; Ma P; Zhang T; Jalani HB; Li G; Lu H
    J Org Chem; 2020 Oct; 85(20):13096-13107. PubMed ID: 32969226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A powerful reagent for synthesis of Weinreb amides directly from carboxylic acids.
    Niu T; Zhang W; Huang D; Xu C; Wang H; Hu Y
    Org Lett; 2009 Oct; 11(19):4474-7. PubMed ID: 19736958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broadly Applicable Ytterbium-Catalyzed Esterification, Hydrolysis, and Amidation of Imides.
    Guissart C; Barros A; Rosa Barata L; Evano G
    Org Lett; 2018 Sep; 20(17):5098-5102. PubMed ID: 30130122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct amidation of carboxylic acids catalyzed by ortho-iodo arylboronic acids: catalyst optimization, scope, and preliminary mechanistic study supporting a peculiar halogen acceleration effect.
    Gernigon N; Al-Zoubi RM; Hall DG
    J Org Chem; 2012 Oct; 77(19):8386-400. PubMed ID: 23013456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concise Synthesis of 2,5-Diketopiperazines via Catalytic Hydroxy-Directed Peptide Bond Formations.
    Koshizuka M; Shinoda K; Makino K; Shimada N
    J Org Chem; 2023 Jun; 88(11):6901-6910. PubMed ID: 37125993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enantioselective total syntheses of several bioactive natural products based on the development of practical asymmetric catalysis.
    Ohshima T
    Chem Pharm Bull (Tokyo); 2004 Sep; 52(9):1031-52. PubMed ID: 15340187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Less Is More: N(BOH)
    Opie CR; Noda H; Shibasaki M; Kumagai N
    Org Lett; 2023 Feb; 25(4):694-697. PubMed ID: 36662124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of fatty amides produced by lipase-catalyzed amidation of multi-hydroxylated fatty acids.
    Levinson WE; Kuo TM; Knothe G
    Bioresour Technol; 2008 May; 99(7):2706-9. PubMed ID: 17582762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simple Synthesis of Amides and Weinreb Amides via Use of PPh
    Kumar A; Akula HK; Lakshman MK
    European J Org Chem; 2010 May; 2010(14):. PubMed ID: 24223494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfonated reduced graphene oxide as a highly efficient catalyst for direct amidation of carboxylic acids with amines using ultrasonic irradiation.
    Mirza-Aghayan M; Tavana MM; Boukherroub R
    Ultrason Sonochem; 2016 Mar; 29():371-9. PubMed ID: 26585017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ru-catalyzed asymmetric hydrogenation of δ-keto Weinreb amides: enantioselective synthesis of (+)-Centrolobine.
    Zhao M; Lu B; Ding G; Ren K; Xie X; Zhang Z
    Org Biomol Chem; 2016 Mar; 14(9):2723-30. PubMed ID: 26837278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.