BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 33007250)

  • 1. Three STIGMA AND STYLE STYLISTs Pattern the Fine Architectures of Apical Gynoecium and Are Critical for Male Gametophyte-Pistil Interaction.
    Li W; Huang X; Zou J; Wu J; Jiao H; Peng X; Sun MX
    Curr Biol; 2020 Dec; 30(23):4780-4788.e5. PubMed ID: 33007250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arabidopsis transcription factor TCP4 controls the identity of the apical gynoecium.
    Wang Y; Wang N; Lan J; Pan Y; Jiang Y; Wu Y; Chen X; Feng X; Qin G
    Plant Cell; 2024 Jul; 36(7):2668-2688. PubMed ID: 38581433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inside the gynoecium: at the carpel margin.
    Reyes-Olalde JI; Zuñiga-Mayo VM; Chávez Montes RA; Marsch-Martínez N; de Folter S
    Trends Plant Sci; 2013 Nov; 18(11):644-55. PubMed ID: 24008116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Putative Protein
    Smith DK; Jones DM; Lau JBR; Cruz ER; Brown E; Harper JF; Wallace IS
    Plant Physiol; 2018 Apr; 176(4):2804-2818. PubMed ID: 29467178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. STY1 and STY2 promote the formation of apical tissues during Arabidopsis gynoecium development.
    Kuusk S; Sohlberg JJ; Long JA; Fridborg I; Sundberg E
    Development; 2002 Oct; 129(20):4707-17. PubMed ID: 12361963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointing to genes critical for growth in a pistil.
    Qin Y; Leydon AR; Manziello A; Pandey R; Mount D; Denic S; Vasic B; Johnson MA; Palanivelu R
    PLoS Genet; 2009 Aug; 5(8):e1000621. PubMed ID: 19714218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The NGATHA genes direct style development in the Arabidopsis gynoecium.
    Trigueros M; Navarrete-Gómez M; Sato S; Christensen SK; Pelaz S; Weigel D; Yanofsky MF; Ferrándiz C
    Plant Cell; 2009 May; 21(5):1394-409. PubMed ID: 19435937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of auxin in style development and apical-basal patterning of the Arabidopsis thaliana gynoecium.
    Ståldal V; Sundberg E
    Plant Signal Behav; 2009 Feb; 4(2):83-5. PubMed ID: 19649177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shedding light on flower development: phytochrome B regulates gynoecium formation in association with the transcription factor SPATULA.
    Foreman J; White J; Graham I; Halliday K; Josse EM
    Plant Signal Behav; 2011 Apr; 6(4):471-6. PubMed ID: 21364315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plantacyanin plays a role in reproduction in Arabidopsis.
    Dong J; Kim ST; Lord EM
    Plant Physiol; 2005 Jun; 138(2):778-89. PubMed ID: 15908590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant Biology: Gynoecium Development with Style.
    de Folter S
    Curr Biol; 2020 Dec; 30(23):R1420-R1422. PubMed ID: 33290708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A potential role for protein O-fucosylation during pollen-pistil interactions.
    Smith DK; Harper JF; Wallace IS
    Plant Signal Behav; 2018; 13(5):e1467687. PubMed ID: 29939807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SPL8 and miR156-targeted SPL genes redundantly regulate Arabidopsis gynoecium differential patterning.
    Xing S; Salinas M; Garcia-Molina A; Höhmann S; Berndtgen R; Huijser P
    Plant J; 2013 Aug; 75(4):566-77. PubMed ID: 23621152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auxin can act independently of CRC, LUG, SEU, SPT and STY1 in style development but not apical-basal patterning of the Arabidopsis gynoecium.
    Ståldal V; Sohlberg JJ; Eklund DM; Ljung K; Sundberg E
    New Phytol; 2008; 180(4):798-808. PubMed ID: 18811619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. JAIBA, a class-II HD-ZIP transcription factor involved in the regulation of meristematic activity, and important for correct gynoecium and fruit development in Arabidopsis.
    Zúñiga-Mayo VM; Marsch-Martínez N; de Folter S
    Plant J; 2012 Jul; 71(2):314-26. PubMed ID: 22409594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hormonal control of the development of the gynoecium.
    Marsch-Martínez N; de Folter S
    Curr Opin Plant Biol; 2016 Feb; 29():104-14. PubMed ID: 26799132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leaf expansion in Arabidopsis is controlled by a TCP-NGA regulatory module likely conserved in distantly related species.
    Ballester P; Navarrete-Gómez M; Carbonero P; Oñate-Sánchez L; Ferrándiz C
    Physiol Plant; 2015 Sep; 155(1):21-32. PubMed ID: 25625546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The HECATE genes regulate female reproductive tract development in Arabidopsis thaliana.
    Gremski K; Ditta G; Yanofsky MF
    Development; 2007 Oct; 134(20):3593-601. PubMed ID: 17855426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergistic action of GCN5 and CLAVATA1 in the regulation of gynoecium development in Arabidopsis thaliana.
    Poulios S; Vlachonasios KE
    New Phytol; 2018 Oct; 220(2):593-608. PubMed ID: 30027613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptome analysis of gynoecium morphogenesis uncovers the chronology of gene regulatory network activity.
    Kivivirta KI; Herbert D; Roessner C; de Folter S; Marsch-Martinez N; Becker A
    Plant Physiol; 2021 Apr; 185(3):1076-1090. PubMed ID: 33793890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.