BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 33007287)

  • 1. Cryoprotectant-dependent control of intracellular ice recrystallization in hepatocytes using small molecule carbohydrate derivatives.
    William N; Acker JP
    Cryobiology; 2020 Dec; 97():123-130. PubMed ID: 33007287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transient loss of membrane integrity following intracellular ice formation in dimethyl sulfoxide-treated hepatocyte and endothelial cell monolayers.
    William N; Acker JP
    Cryobiology; 2020 Dec; 97():217-221. PubMed ID: 33031823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of ice recrystallization during cryopreservation of cord blood grafts improves platelet engraftment.
    Jahan S; Adam MK; Manesia JK; Doxtator E; Ben RN; Pineault N
    Transfusion; 2020 Apr; 60(4):769-778. PubMed ID: 32187691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of intracellular ice formation in Drosophila melanogaster embryos.
    Myers SP; Pitt RE; Lynch DV; Steponkus PL
    Cryobiology; 1989 Oct; 26(5):472-84. PubMed ID: 2507228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulating Intracellular Ice Growth with Cell-Permeating Small-Molecule Ice Recrystallization Inhibitors.
    Poisson JS; Acker JP; Briard JG; Meyer JE; Ben RN
    Langmuir; 2019 Jun; 35(23):7452-7458. PubMed ID: 30119611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Infrared spectroscopic analysis of hydrogen-bonding interactions in cryopreservation solutions.
    Caliskan S; Oldenhof H; Temeloglu P; Sieme H; Wolkers WF
    Biochim Biophys Acta Gen Subj; 2023 Jan; 1867(1):130254. PubMed ID: 36243203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small molecule ice recrystallization inhibitors mitigate red blood cell lysis during freezing, transient warming and thawing.
    Briard JG; Poisson JS; Turner TR; Capicciotti CJ; Acker JP; Ben RN
    Sci Rep; 2016 Mar; 6():23619. PubMed ID: 27021850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Effect of Cryoprotectants Concentration on Ice Crystal Propagation Velocity.
    Amir A; Yehudit N; Pasquale P; Roy A
    Biopreserv Biobank; 2023 Dec; 21(6):547-553. PubMed ID: 36383132
    [No Abstract]   [Full Text] [Related]  

  • 9. Inhibiting ice recrystallization and optimization of cell viability after cryopreservation.
    Chaytor JL; Tokarew JM; Wu LK; Leclère M; Tam RY; Capicciotti CJ; Guolla L; von Moos E; Findlay CS; Allan DS; Ben RN
    Glycobiology; 2012 Jan; 22(1):123-33. PubMed ID: 21852258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted development and optimization of small-molecule ice recrystallization inhibitors (IRIs) for the cryopreservation of biological systems.
    McMunn LE; Walsh EM; Ben RN
    Cryo Letters; 2024; 45(2):69-87. PubMed ID: 38557986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryoprotective agent toxicity interactions in human articular chondrocytes.
    Almansoori KA; Prasad V; Forbes JF; Law GK; McGann LE; Elliott JA; Jomha NM
    Cryobiology; 2012 Jun; 64(3):185-91. PubMed ID: 22274740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterizing the ability of an ice recrystallization inhibitor to improve platelet cryopreservation.
    Waters L; Ben R; Acker JP; Padula MP; Marks DC; Johnson L
    Cryobiology; 2020 Oct; 96():152-158. PubMed ID: 32707122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of various extenders and permeating cryoprotectants on cryopreservation of cynomolgus monkey (Macaca fascicularis) spermatozoa.
    Li YH; Cai KJ; Kovacs A; Ji WZ
    J Androl; 2005; 26(3):387-95. PubMed ID: 15867007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple cryoprotectant toxicity model for vitrification solution optimization.
    Warner RM; Brown KS; Benson JD; Eroglu A; Higgins AZ
    Cryobiology; 2022 Oct; 108():1-9. PubMed ID: 36113568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane permeabilization of phosphatidylcholine liposomes induced by cryopreservation and vitrification solutions.
    Sydykov B; Oldenhof H; de Oliveira Barros L; Sieme H; Wolkers WF
    Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):467-474. PubMed ID: 29100892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of the antifreeze protein from the arctic yeast Leucosporidium sp. AY30 on cryopreservation of the marine diatom Phaeodactylum tricornutum.
    Koh HY; Lee JH; Han SJ; Park H; Lee SG
    Appl Biochem Biotechnol; 2015 Jan; 175(2):677-86. PubMed ID: 25342270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The efficacy of ice recrystallization inhibitors in rat lung cryopreservation using a low cost technique for ex vivo subnormothermic lung perfusion.
    Lautner L; Himmat S; Acker JP; Nagendran J
    Cryobiology; 2020 Dec; 97():93-100. PubMed ID: 33031822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dimethyl sulfoxide and ethylene glycol promote membrane phase change during cryopreservation.
    Spindler R; Wolkers WF; Glasmacher B
    Cryo Letters; 2011; 32(2):148-57. PubMed ID: 21766144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrosterically stabilized cellulose nanocrystals demonstrate ice recrystallization inhibition and cryoprotection activities.
    Li T; Li M; Dia VP; Lenaghan S; Zhong Q; Wu T
    Int J Biol Macromol; 2020 Dec; 165(Pt B):2378-2386. PubMed ID: 33132127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A biocompatible cell cryoprotectant based on sulfoxide-containing amino acids: mechanism and application.
    Liu M; Chen C; Liang L; Yu C; Guo B; Zhang H; Qiu Y; Zhang H; Yao F; Li J
    J Mater Chem B; 2023 Mar; 11(11):2504-2517. PubMed ID: 36852742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.