These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 33007425)

  • 21. Insights into the regulation of tumor dormancy by angiogenesis in experimental tumors.
    Indraccolo S
    Adv Exp Med Biol; 2013; 734():37-52. PubMed ID: 23143974
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acidosis Drives the Reprogramming of Fatty Acid Metabolism in Cancer Cells through Changes in Mitochondrial and Histone Acetylation.
    Corbet C; Pinto A; Martherus R; Santiago de Jesus JP; Polet F; Feron O
    Cell Metab; 2016 Aug; 24(2):311-23. PubMed ID: 27508876
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mitochondria and cancer chemoresistance.
    Guerra F; Arbini AA; Moro L
    Biochim Biophys Acta Bioenerg; 2017 Aug; 1858(8):686-699. PubMed ID: 28161329
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simultaneous Hypoxia and Low Extracellular pH Suppress Overall Metabolic Rate and Protein Synthesis In Vitro.
    Sørensen BS; Busk M; Overgaard J; Horsman MR; Alsner J
    PLoS One; 2015; 10(8):e0134955. PubMed ID: 26274822
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Antitumor and chemosensitizing action of dichloroacetate implicates modulation of tumor microenvironment: a role of reorganized glucose metabolism, cell survival regulation and macrophage differentiation.
    Kumar A; Kant S; Singh SM
    Toxicol Appl Pharmacol; 2013 Nov; 273(1):196-208. PubMed ID: 24051182
    [TBL] [Abstract][Full Text] [Related]  

  • 26. BRCA1 Deficiency Upregulates NNMT, Which Reprograms Metabolism and Sensitizes Ovarian Cancer Cells to Mitochondrial Metabolic Targeting Agents.
    Kanakkanthara A; Kurmi K; Ekstrom TL; Hou X; Purfeerst ER; Heinzen EP; Correia C; Huntoon CJ; O'Brien D; Wahner Hendrickson AE; Dowdy SC; Li H; Oberg AL; Hitosugi T; Kaufmann SH; Weroha SJ; Karnitz LM
    Cancer Res; 2019 Dec; 79(23):5920-5929. PubMed ID: 31619387
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells.
    Smolková K; Plecitá-Hlavatá L; Bellance N; Benard G; Rossignol R; Ježek P
    Int J Biochem Cell Biol; 2011 Jul; 43(7):950-68. PubMed ID: 20460169
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exposure to hypoxia, glucose starvation and acidosis: effect on invasive capacity of murine tumor cells and correlation with cathepsin (L + B) secretion.
    Cuvier C; Jang A; Hill RP
    Clin Exp Metastasis; 1997 Jan; 15(1):19-25. PubMed ID: 9009102
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hypoglycemic/hypoxic condition in vitro mimicking the tumor microenvironment markedly reduced the efficacy of anticancer drugs.
    Onozuka H; Tsuchihara K; Esumi H
    Cancer Sci; 2011 May; 102(5):975-82. PubMed ID: 21255190
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metabolic reprogramming as a continuous changing behavior of tumor cells.
    Peppicelli S; Bianchini F; Calorini L
    Tumour Biol; 2015 Aug; 36(8):5759-62. PubMed ID: 26159855
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impact of hypoxia-related tumor acidosis on cytotoxicity of different chemotherapeutic drugs in vitro and in vivo.
    Thews O; Riemann A; Nowak M; Gekle M
    Adv Exp Med Biol; 2014; 812():51-58. PubMed ID: 24729214
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anti-tumor effects of everolimus and metformin are complementary and glucose-dependent in breast cancer cells.
    Ariaans G; Jalving M; Vries EG; Jong S
    BMC Cancer; 2017 Mar; 17(1):232. PubMed ID: 28356082
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of the acidic environment on gene expression and functional parameters of tumors in vitro and in vivo.
    Rauschner M; Lange L; Hüsing T; Reime S; Nolze A; Maschek M; Thews O; Riemann A
    J Exp Clin Cancer Res; 2021 Jan; 40(1):10. PubMed ID: 33407762
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of antitumor biguanides targeting energy metabolism and stress responses in the tumor microenvironment.
    Sakai T; Matsuo Y; Okuda K; Hirota K; Tsuji M; Hirayama T; Nagasawa H
    Sci Rep; 2021 Mar; 11(1):4852. PubMed ID: 33649449
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Novel Malate Dehydrogenase 2 Inhibitor Suppresses Hypoxia-Inducible Factor-1 by Regulating Mitochondrial Respiration.
    Ban HS; Xu X; Jang K; Kim I; Kim BK; Lee K; Won M
    PLoS One; 2016; 11(9):e0162568. PubMed ID: 27611801
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mitochondrial Targeting in an Anti-Austerity Approach Involving Bioactive Metabolites Isolated from the Marine-Derived Fungus
    Abdel-Naime WA; Kimishima A; Setiawan A; Fahim JR; Fouad MA; Kamel MS; Arai M
    Mar Drugs; 2020 Nov; 18(11):. PubMed ID: 33171814
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antimetabolite TTL-315 selectively kills glucose-deprived cancer cells and enhances responses to cytotoxic chemotherapy in preclinical models of cancer.
    DuHadaway J; Prendergast GC
    Oncotarget; 2016 Feb; 7(7):7372-80. PubMed ID: 26840263
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The dichotomous role of the glycolytic metabolism pathway in cancer metastasis: Interplay with the complex tumor microenvironment and novel therapeutic strategies.
    El Hassouni B; Granchi C; Vallés-Martí A; Supadmanaba IGP; Bononi G; Tuccinardi T; Funel N; Jimenez CR; Peters GJ; Giovannetti E; Minutolo F
    Semin Cancer Biol; 2020 Feb; 60():238-248. PubMed ID: 31445217
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Eradicating Quiescent Tumor Cells by Targeting Mitochondrial Bioenergetics.
    Zhang X; De Milito A; Demiroglu-Zergeroglu A; Gullbo J; D'Arcy P; Linder S
    Trends Cancer; 2016 Nov; 2(11):657-663. PubMed ID: 28741504
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tumor cells switch to mitochondrial oxidative phosphorylation under radiation via mTOR-mediated hexokinase II inhibition--a Warburg-reversing effect.
    Lu CL; Qin L; Liu HC; Candas D; Fan M; Li JJ
    PLoS One; 2015; 10(3):e0121046. PubMed ID: 25807077
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.