BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 33007502)

  • 1. Acid enhancement of ROS generation by complex-I reverse electron transport is balanced by acid inhibition of complex-II: Relevance for tissue reperfusion injury.
    Milliken AS; Kulkarni CA; Brookes PS
    Redox Biol; 2020 Oct; 37():101733. PubMed ID: 33007502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactive oxygen species generation by reverse electron transfer at mitochondrial complex I under simulated early reperfusion conditions.
    Tabata Fukushima C; Dancil IS; Clary H; Shah N; Nadtochiy SM; Brookes PS
    Redox Biol; 2024 Apr; 70():103047. PubMed ID: 38295577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactive Oxygen Species Generation by Reverse Electron Transfer at Mitochondrial Complex I Under Simulated Early Reperfusion Conditions.
    Fukushima CT; Dancil IS; Clary H; Shah N; Nadtochiy SM; Brookes PS
    bioRxiv; 2023 Nov; ():. PubMed ID: 38045326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibiting Succinate Release Worsens Cardiac Reperfusion Injury by Enhancing Mitochondrial Reactive Oxygen Species Generation.
    Milliken AS; Nadtochiy SM; Brookes PS
    J Am Heart Assoc; 2022 Jul; 11(13):e026135. PubMed ID: 35766275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactive oxygen species production induced by pore opening in cardiac mitochondria: The role of complex II.
    Korge P; John SA; Calmettes G; Weiss JN
    J Biol Chem; 2017 Jun; 292(24):9896-9905. PubMed ID: 28450394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased Succinate Accumulation Induces ROS Generation in
    Kamarauskaite J; Baniene R; Trumbeckas D; Strazdauskas A; Trumbeckaite S
    Biomed Res Int; 2020; 2020():8855585. PubMed ID: 33102598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS.
    Chouchani ET; Pell VR; Gaude E; Aksentijević D; Sundier SY; Robb EL; Logan A; Nadtochiy SM; Ord ENJ; Smith AC; Eyassu F; Shirley R; Hu CH; Dare AJ; James AM; Rogatti S; Hartley RC; Eaton S; Costa ASH; Brookes PS; Davidson SM; Duchen MR; Saeb-Parsy K; Shattock MJ; Robinson AJ; Work LM; Frezza C; Krieg T; Murphy MP
    Nature; 2014 Nov; 515(7527):431-435. PubMed ID: 25383517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactive oxygen species production induced by pore opening in cardiac mitochondria: The role of complex III.
    Korge P; Calmettes G; John SA; Weiss JN
    J Biol Chem; 2017 Jun; 292(24):9882-9895. PubMed ID: 28450391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reverse electron transfer results in a loss of flavin from mitochondrial complex I: Potential mechanism for brain ischemia reperfusion injury.
    Stepanova A; Kahl A; Konrad C; Ten V; Starkov AS; Galkin A
    J Cereb Blood Flow Metab; 2017 Dec; 37(12):3649-3658. PubMed ID: 28914132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardioprotective effects of idebenone do not involve ROS scavenging: Evidence for mitochondrial complex I bypass in ischemia/reperfusion injury.
    Perry JB; Davis GN; Allen ME; Makrecka-Kuka M; Dambrova M; Grange RW; Shaikh SR; Brown DA
    J Mol Cell Cardiol; 2019 Oct; 135():160-171. PubMed ID: 31445917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates.
    Siebels I; Dröse S
    Biochim Biophys Acta; 2013 Oct; 1827(10):1156-64. PubMed ID: 23800966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane potential and delta pH dependency of reverse electron transport-associated hydrogen peroxide production in brain and heart mitochondria.
    Komlódi T; Geibl FF; Sassani M; Ambrus A; Tretter L
    J Bioenerg Biomembr; 2018 Oct; 50(5):355-365. PubMed ID: 30116920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model of mitochondrial superoxide production during ischaemia-reperfusion injury for therapeutic development and mechanistic understanding.
    Sorby-Adams A; Prime TA; Miljkovic JL; Prag HA; Krieg T; Murphy MP
    Redox Biol; 2024 Jun; 72():103161. PubMed ID: 38677214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of pyruvate dehydrogenase kinase 4 ameliorates kidney ischemia-reperfusion injury by reducing succinate accumulation during ischemia and preserving mitochondrial function during reperfusion.
    Oh CJ; Kim MJ; Lee JM; Kim DH; Kim IY; Park S; Kim Y; Lee KB; Lee SH; Lim CW; Kim M; Lee JY; Pagire HS; Pagire SH; Bae MA; Chanda D; Thoudam T; Khang AR; Harris RA; Ahn JH; Jeon JH; Lee IK
    Kidney Int; 2023 Oct; 104(4):724-739. PubMed ID: 37399974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactive oxygen species are generated by the respiratory complex II--evidence for lack of contribution of the reverse electron flow in complex I.
    Moreno-Sánchez R; Hernández-Esquivel L; Rivero-Segura NA; Marín-Hernández A; Neuzil J; Ralph SJ; Rodríguez-Enríquez S
    FEBS J; 2013 Feb; 280(3):927-38. PubMed ID: 23206332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elucidating Mitochondrial Electron Transport Chain Supercomplexes in the Heart During Ischemia-Reperfusion.
    Jang S; Lewis TS; Powers C; Khuchua Z; Baines CP; Wipf P; Javadov S
    Antioxid Redox Signal; 2017 Jul; 27(1):57-69. PubMed ID: 27604998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impairment of pH gradient and membrane potential mediates redox dysfunction in the mitochondria of the post-ischemic heart.
    Kang PT; Chen CL; Lin P; Chilian WM; Chen YR
    Basic Res Cardiol; 2017 Jul; 112(4):36. PubMed ID: 28508960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy substrate metabolism and mitochondrial oxidative stress in cardiac ischemia/reperfusion injury.
    Dambrova M; Zuurbier CJ; Borutaite V; Liepinsh E; Makrecka-Kuka M
    Free Radic Biol Med; 2021 Mar; 165():24-37. PubMed ID: 33484825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The dependence of brain mitochondria reactive oxygen species production on oxygen level is linear, except when inhibited by antimycin A.
    Stepanova A; Konrad C; Manfredi G; Springett R; Ten V; Galkin A
    J Neurochem; 2019 Mar; 148(6):731-745. PubMed ID: 30582748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial Reactive Oxygen Species Generated at the Complex-II Matrix or Intermembrane Space Microdomain Have Distinct Effects on Redox Signaling and Stress Sensitivity in
    Trewin AJ; Bahr LL; Almast A; Berry BJ; Wei AY; Foster TH; Wojtovich AP
    Antioxid Redox Signal; 2019 Sep; 31(9):594-607. PubMed ID: 30887829
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.